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Abstract. A nonassociative algebra is defined to be zeropotent if the square of any element
is zero. Zeropotent algebras are exactly the same as anticommutative algebras when the
characteristic of the ground field is not two. Also, in general, the class of zeropotent algebras
properly contains that of Lie algebras. In this paper, we give a complete classification of
three-dimensional zeropotent algebras over an algebraically closed field of characteristic not
equal to two up to isomorphism. By restricting the result to the subclass of Lie algebras, we
can obtain a classification of three-dimensional complex Lie algebras, which is in accordance
with the conventional one.

1. Introduction

Let K be a field and char K denote the characteristic of K. A nonassociative algebra
A over K is defined to be zeropotent*1 if x2 = 0 for all x ∈ A. A zeropotent algebra A is
anticommutative, that is, xy = −yx for all x, y ∈ A, and the converse is true if char K is
not two. As is well-known, a zeropotent algebra A is said to be a Lie algebra if it further
satisfies the Jacobi identity (xy)z+(yz)x+(zx)y = 0 for all x, y, z ∈ A. In general, the class
of zeropotent algebras properly contains that of Lie algebras. For a systematic exposition of
nonassociative algebras, we refer the reader to [6]. For more details on Lie algebras, see [3].

Obviously, a one-dimensional zeropotent algebra is the unique algebra Kx with x2 = 0,
which is an abelian Lie algebra. Also, it is straightforward that a two-dimensional zeropotent
algebra Kx+Ky has two isomorphism classes defined by (1) xy = 0 (an abelian Lie algebra)
and by (2) xy = x (a Lie algebra which is non-abelian if char K 6= 2).

The aim of this paper is to completely classify three-dimensional zeropotent algebras over
an algebraically closed filedK of charK 6= 2 up to isomorphism. Let us define the equivalence
relation ∼ in K by a ∼ b if and only if a = ±b for a, b ∈ K. Then let H ⊂ K be a complete set
of equivalence class representatives for K/∼. Typically, in the case where K is the complex
number field C, H is taken to be the half plane {z ∈ C | −π/2 < arg(z) ≤ π/2} ∪ {0}. Our
result is that the algebras are classified into ten families

A0, A1, A2, A3, {A4(a)}a∈H, A5, A6, {A7(a)}a∈H, A8 and A9
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up to isomorphism, where Ai is a type of the structure matrix with respect to a linear base
whose entries are determined from the product between each pair of the base. Two of the
ten families are parametrized by a in H, which implies that there exist an infinite number of
non-isomorphic algebras in these families. The details will be described in Theorem 8.1.

By restricting the result to the subclass of Lie algebras over C, we can easily obtain a
classification of three-dimensional complex Lie algebras up to isomorphism. This classification
is in accordance with the conventional one as found in [3, 2]. This will be briefly mentioned
as a final remark.

The rest of this paper is organized as follows. In Section 2, we characterize three-dimensional
zeropotent algebras by the above mentioned structure matrices. In the term of an equivalence
relation between the matrices, we give a criterion for isomorphism between three-dimensional
zeropotent algebras (Proposition 2.1). By this, the problem of classifying three-dimensional
zeropotent algebras comes down to that of determining equivalence classes of structure ma-
trices, which is a central theme of this paper. In Section 3, we give a necessary and sufficient
condition for a zeropotent algebra to be a Lie algebra (Proposition 3.2). We call a zeropotent
algebra symmetric if its structure matrix is symmetric, and give a close relationship between
symmetric algebras and Lie algebras (Corollary 3.3). Other than rank and symmetry, we
propose a new ‘invariant’ called the jacobi element, which will play a crucial role in prov-
ing non-isomorphism of two different types of zeropotent algebras (Proposition 3.4). We
separate zeropotent algebras into two categories: curly and straight. That is, a zeropotent
algebra is curly if the product of any two elements comes into the space spanned by these
elements, otherwise it is straight. Section 4 completely determines three-dimensional curly
algebras (Proposition 4.1). The subsequent three sections concern straight algebras when
K is an algebraically closed field of char K 6= 2. In Section 5, we show that the structure
matrix of any straight algebra is equivalent to some triangular matrix (Lemma 5.2), and
present a canonical form of the triangular matrix for each rank (Corollary 5.3). Based on
this triangulation, we shall classify three-dimensional straight algebras for ranks 1 and 2 in
Section 6 (Propositions 6.1 and 6.3) and for rank 3 in Section 7 (Proposition 7.2). Finally,
Section 8 completes the desired classification by summarizing the above results and gives
some concluding remarks.

2. A criterion for isomorphism

In this and the next two sections K is an arbitrary field. Let A be a zeropotent algbera
over K of dimension 3. Let {e1, e2, e3} be a linear base of A. Because A is zeropotent,
e21 = e22 = e23 = 0, e1e2 = −e2e1, e1e3 = −e3e1 and e2e3 = −e3e2. Write

(1)

 e2e3 = a11e1 + a12e2 + a13e3
e3e1 = a21e1 + a22e2 + a23e3
e1e2 = a31e1 + a32e2 + a33e3

with a11, a12, a13, a21, a22, a23, a31, a32, a33 ∈ K. We can rewrite (1) as

(2)

e2e3
e3e1
e1e2

 = A

e1
e2
e3
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with the matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

which is called the structure matrix with respect to the base {e1, e2, e3}. The structure matrix
is determined by the algebra, and vice versa. Hence, we hereafter will say that the algebra is
defined by the structure matrix, and freely use the same symbol A both for the matrix and
for the algebra if there is no confusion.

Let A′ be another zeropotent algebra on a base {e′1, e′2, e′3} defined by

(3)

e′2e
′
3

e′3e
′
1

e′1e
′
2

 = A′

e′1
e′2
e′3

 ,

where

A′ =

a′11 a′12 a′13
a′21 a′22 a′23
a′31 a′32 a′33


with a′11, a

′
12, a

′
13, a

′
21, a

′
22, a

′
23, a

′
31, a

′
32, a

′
33 ∈ K. That is, A′ is the structure matrix with

respect to the base {e′1, e′2, e′3}.
Suppose that A and A′ are isomorphic, and let Φ : A → A′ be an isomorphism. Let

(4) X =

x11 x12 x13
x21 x22 x23
x31 x32 x33


with x11, x12, x13, x21, x22, x23, x31, x32, x33 ∈ K be the matrix associated with the linear map
Φ, that is,

(5)

Φ(e1)
Φ(e2)
Φ(e3)

 = X

e′1
e′2
e′3

 .

Since Φ is an isomorphism, we have

(6)

Φ(e2)Φ(e3)
Φ(e3)Φ(e1)
Φ(e1)Φ(e2)

 =

Φ(e2e3)
Φ(e3e1)
Φ(e1e2)

 = A

Φ(e1)
Φ(e2)
Φ(e3)

 = AX

e′1
e′2
e′3

 ,

using (2) and (5). On the other hand we have

Φ(e2)Φ(e3) = (x21e
′
1 + x22e

′
2 + x23e

′
3)(x31e

′
1 + x32e

′
2 + x33e

′
3)

= (x22x33 − x23x32)e
′
2e

′
3 − (x21x33 − x23x31)e

′
3e

′
1 + (x21x32 − x22x31)e

′
1e

′
2,

Φ(e3)Φ(e1) = (x31e
′
1 + x32e

′
2 + x33e

′
3)(x11e

′
1 + x12e

′
2 + x13e

′
3)

= −(x12x33 − x13x32)e
′
2e

′
3 + (x11x33 − x13x31)e

′
3e

′
1 − (x11x32 − x12x31)e

′
1e

′
2
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and

Φ(e1)Φ(e2) = (x11e
′
1 + x12e

′
2 + x13e

′
3)(x21e

′
1 + x22e

′
2 + x23e

′
3)

= (x12x23 − x13x22)e
′
2e

′
3 − (x11x23 − x13x21)e

′
3e

′
1 + (x11x22 − x12x21)e

′
1e

′
2.

Hence,

(7)

Φ(e2)Φ(e3)
Φ(e3)Φ(e1)
Φ(e1)Φ(e2)

 = Y

e′2e
′
3

e′3e
′
1

e′1e
′
2

 = Y A′

e′1
e′2
e′3


by (3), where

Y =

y11 y12 y13
y21 y22 y23
y31 y32 y33


and yij is the (ij)-cofactor of X. Because Y = |X| tX−1 by (6) and (7), we get

(8) A′ =
1

|X|
tXAX.

Conversely, if (8) holds, the linear map associated with X is an isomorphism. Thus, we
have

Proposition 2.1. Let A and A′ be three-dimensional zeropotent algebras over K. Then, A
and A′ are isomorphic if and only if there is a nonsingular matrix X satisfying (8).

We remark that the equality (8) also appears in [2, 5] for Lie algebras, but our proposition
is claimed for the wider class of zeropotent algebras.

Corollary 2.2. If A and A′ are isomorphic, then rank A=rank A′.

Corollary 2.3. If |A| = |A′| 6= 0, then A and A′ are isomorphic if and only if there is a
matrix X such that |X| = 1 and

(9) A′ = tXAX.

Proof. If (8) holds, then

|A′| = 1

|X|3
|tX| |A| |X| = |A|

|X|
.

Therefore, if |A| = |A′| 6= 0, then |X| = 1 and (9) holds. �

Corollary 2.4. If K is algebraically closed, then A and A′ are isomorphic if and only if there
is a nonsingular matrix X satisfying (9).

Proof. Replacing X by X√
|X|

in (8), we get (9). Conversely, replacing X by X
|X| in (9), we get

(8). �

When (8) holds, we say that the matrices A and A′ are equivalent and refer to X as a
transformation matrix for the equivalence A ∼= A′. Also, when using the symbols A and A′

as algebras, we call this X a transformation matrix for the isomorphism A ∼= A′ as well.
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3. Symmetric algebras and Lie algebras

Let A be a zeropotent algebra of dimension 3 with base {e1, e2, e3} over K. We say that
A is a symmetric algebra if the matrix A defining it is symmetric. Symmetry is an invariant
property of algebras. In fact,

Proposition 3.1. If A is symmetric and A is isomorphic to A′, then A′ is symmetric.

Proof. By Proposition 2.1, A′ = 1
|X|

tXAX for a nonsingular matrix X. Hence, if A is sym-

metric, then so is A′. �

For α, β, γ ∈ K, the diagonal matrix

α 0 0
0 β 0
0 0 γ

 is denoted by D(α, β, γ). Algebras

defined by diagonal matrices are typical symmetric algebras.

We define the jacobi element jac(A) of A (with respect to the base {e1, e2, e3}) by

jac(A) = (e1, e2, e3)

e2e3
e3e1
e1e2

 .

By (1) we have

(10) jac(A) = (e1, e2, e3)A
t(e1, e2, e3) = b1e2e3 + b2e3e1 + b3e1e2 = (b1, b2, b3)A

t(e1, e2, e3),

where b1 = a23 − a32, b2 = a31 − a13 and b3 = a12 − a21.

Proposition 3.2. A is a Lie algebra if and only if

(11) (b1, b2, b3)A = (0, 0, 0).

Proof. The Jacobi identity jac(A) = 0 holds if and only if the right hand side in (10) is equal
to 0, if and only if (11) holds. �

Corollary 3.3. A symmetric algebra is a Lie algebra. When rank A = 3, then A is a Lie
algebra if and only if A is symmetric.

Proof. If A is symmetric, then b1 = b2 = b3 = 0 and so (11) holds. If A is nonsingular, then
(11) holds, if and only if b1 = b2 = b3 = 0, if and only if A is symmetric. �

Let A′ be another algebra on a base {e′1, e′2, e′3} defined by a matrix A′ and let Φ : A → A′

be an isomorphism with the associated matrix X in (4). Then, by (5) and (6) we have

Φ(jac(A)) = (Φ(e1),Φ(e2),Φ(e3))

Φ(e2e3)
Φ(e3e1)
Φ(e1e2)

 = (e′1, e
′
2, e

′
3)

tXAX

e′1
e′2
e′3

 .

The last term is equal to

|X|(e′1, e′2, e′3)A′ t(e′1, e
′
2, e

′
3) = |X|jac(A′)

by (8). Hence we have
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Proposition 3.4. If A and A′ are isomorphic with a transformation matrix X, and if
jac(A) = a1e1 + a2e2 + a3e3 and jac(A′) = a′1e

′
1 + a′2e

′
2 + a′3e

′
3, then we have

(a1, a2, a3)X = |X|(a′1, a′2, a′3).

This proposition claims that the jacobi element is in a sense an invariant of algebras,
which will play a crucial role in proving non-isomorphism of two different types of zeropotent
algebras in Sections 6 and 7.

4. Curly algebras

A zeropotent algebra A is curly if for any e, f ∈ A, their product ef is in the space spanned
by {e, f}, otherwise A is straight. We call a curly zeropotent algebra and a straight zeropotent
algebra simply a curly algebra and a straight algebra, respectively. In this section, we assume
that A is a curly algebra of dimension 3 over K.

Let {e, f, g} be a linear base of A. Since A is curly, fg = af + bg, ge = a′e + cg and
ef = b′e+ c′f for a, b, c, a′, b′, c′ ∈ K. Because

(e+ f)g = eg + fg = −a′e+ af + (b− c)g

is in K{e+f, g}, we see a′ = −a. Similarly, we have b′ = −b and c′ = −c. Hence A is defined
by

A(a, b, c) =

 0 a b
−a 0 c
−b −c 0

 .

First, let A0 = A(0, 0, 0). A0 is obviously a curly algebra which is an abelian Lie algebra.

If a 6= 0, let X =

1 0 c
0 1 −b
0 0 a

. Then, |X| = a and

(12)
1

|X|
tXAX = A(1, 0, 0).

If c 6= 0, let X =

 c 0 0
−b 1 0
a 0 1

. Then, |X| = c and

(13)
1

|X|
tXAX = A(0, 0, 1).

If b 6= 0, let X =

1 c 0
0 −b 0
0 a 1

. Then, |X| = b and

(14)
1

|X|
tXAX = A(0, 1, 0).

Thus, we see that the algebra defined by A(1, 1, 1) is isomorphic to these algebras defined by
the right hand sides of (12), (13) and (14). Consequently, all these algebras are isomorphic
to each other. Let A3 = A(1, 0, 0). Apparently A0 is not isomorphic to A3 since rank A0 6=
rank A3. In conclusion, we have
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Proposition 4.1. Up to isomorphism, there are exactly two curly algebras defined by

A0 =

0 0 0
0 0 0
0 0 0

 and A3 =

 0 1 0
−1 0 0
0 0 0

 .

5. Straight algebras and triangulation

From this section K is an algebraically closed field of characteristic not equal to 2. Let A
be a straight algebra of dimension 3 over K. Let {e, f, ef} be a linear base of A such that
g = ef . Then, A is defined by

(15) A =

a11 a12 a13
a21 a22 a23
0 0 1


for a11, a12, a13, a21, a22, a23 ∈ K.

A 2× 2 matrix

(16) B =

(
a11 a12
a21 a22

)
with a11, a12, a21, a22 ∈ K is marginal if

a11 = a22 = a12 + a21 = 0.

In this case we also say that A is marginal. We start with the following easy lemma. For

α, β ∈ K, let D(α, β) denote the diagonal matrix

(
α 0
0 β

)
.

Lemma 5.1. If B in (16) is not marginal, then there exists a nonsingular matrix Y over K
such that

tY BY =

(
ε1 a
0 ε2

)
with a ∈ K and ε1, ε2 ∈ {0, 1}.

Proof. If a21 = 0, then let X = D(1, 1). If a22 6= 0, let X =

(
1 0

−a21/a22 1

)
. If a21 6=

0, a22 = 0 and [a11 6= 0 or a12 + a21 6= 0], then taking d ∈ K so that a11 + (a12 + a21)d 6= 0,

let X =

(
1 1
d −(a11 + a12d)/a21

)
. In any case, |X| 6= 0 and tXBX is of the form

(
a b
0 c

)
.

Otherwise, B is marginal.
Let α =

√
a if a 6= 0, and let α = 1 if a = 0. Let γ =

√
c if c 6= 0, and let γ = 1 if c = 0.

Now set Y = XD(1/α, 1/γ), then tY BY =

(
ε1 b/αγ
0 ε2

)
with ε1, ε2 ∈ {0, 1}. �

For a, b, c ∈ K and ε1, ε2 ∈ {0, 1}, let

T (a, b, c, ε1, ε2) =

ε1 a b
0 ε2 c
0 0 1

 .
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Lemma 5.2. For any matrix A in (15), there exists a nonsingular matrix X such that

tXAX = T (a, b, c, ε1, ε2)

with a, b, c ∈ K and ε1, ε2 ∈ {0, 1}.

Proof. First, suppose that B =

(
a11 a12
a21 a22

)
is marginal, that is, a11 = a22 = a12 + a21 = 0.

Let a = a12, b = a13 and c = a23. If a = 0, then a21 = −a = 0 and A = T (0, b, c, 0, 0). Thus,
we may suppose that a 6= 0. Let

X1 =

(c+ d)/2a 0 0
0 a 1
1 0 (−c+ d)/2

 *2,

where d =
√
c2 + 4, then we have

tX1AX1 =

1 + b(c+ d)/2a a(c+ d)/2 (b+ ad)/a
a(c− d)/2 0 ac(d− c)/2

0 0 1

 .

This matrix is not marginal if c 6= 0 or a+ b 6= 0. If c = a+ b = 0, let X2 =

 0 1/a 0
−a 1 2
0 2 1

.

Then, we have tX2AX2 =

 0 a 0
−a 2 3
0 0 1

 and this matrix is not marginal either.

If B is not marginal, then by Lemma 5.1, there is a nonsingular 2 × 2 matrix Y such

that tY BY =

(
ε1 a
0 ε2

)
with a ∈ K and ε1, ε2 ∈ {0, 1}. Let X =

(
Y 0
0 1

)
, then tXAX =

T (a, b, c, ε1, ε2) for some b, c ∈ K. �

Corollary 5.3. Let A be a straight algebra. If rank A = 1, then A can be defined by
T (0, b, c, 0, 0) with b, c ∈ K. If rank A = 2, then A can be defined by T (a, b, c, 0, 1) with
a, b, c ∈ K. If rank A = 3, then A can be defined by T (a, b, c, 1, 1) with a, b, c ∈ K.

Proof. Clearly rank T (a, b, c, ε1, ε2) = 1 if and only if a = ε1 = ε2 = 0, and rank T (a, b, c, ε1, ε2) =
3 if and only if ε1 = ε2 = 1. When rank T (a, b, c, ε1, ε2) = 2, we have three cases where (i)
ε1 = 0, ε2 = 1, (ii) ε1 = 1, ε2 = 0 and (iii) ε1 = ε2 = 0, a 6= 0.

Put

X0 =

 0 1 0
−1 0 0
0 0 1

 ,

*2We found such a matrix by solving the system of nine algebraic equations in nine variables derived
from a given matrix equation tXAX = A′. In general, however, this task is very hard and so we often used
computational algebraic techniques including Gröbner basis. This is not the subject of the present paper and
we will not go into the details. Most transformation matrices that appear in this paper were computed in this
manner. In some of the computations, we used computer algebra system Mathematica or Maple, especially for
Gröbner basis computation and linear algebra operations. However, we finally checked that every obtained
transformation matrix satisfies the associated matrix equation by hand calculations.
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and for a ∈ K \ {0} let

X1 =

 1 1 0
−1/a 0 0
0 0 1

 and X2 =

1 1/a 0
0 1 0
0 0 1

 .

Then, we see
tX0T (0, b, c, 1, 0)X0 = T (0,−c, b, 0, 1),

and if a 6= 0, we see
tX1T (a, b, c, 1, 0)X1 = T (1, b− c/a, b, 0, 1)

and
tX2T (a, b, c, 0, 0)X2 = T (a, b, c+ b/a, 0, 1).

Hence, any matrix in the cases (ii) and (iii) is equivalent to a matrix in (i), and so A can be
defined by T (a, b, c, 0, 1) for some a, b, c ∈ K. �

6. Straight algebras of rank 1 and rank 2

Let A be a straight algebra of rank 1. By Corollary 5.3, A can be defined by

B(a, b) = T (0, a, b, 0, 0) =

0 0 a
0 0 b
0 0 1


with a, b ∈ K. If b 6= 0, let X =

 0 1 0
1/b −a/b 0
0 0 1

. Then we have

(17) tXB(a, b)X = B(1, 0).

If a 6= 0, we have

(18) D(1/a, 1, 1)B(a, b)D(1/a, 1, 1) = B(1, b).

Letting A1 = B(0, 0) and A2 = B(1, 0), we have

Proposition 6.1. Up to isomorphism, there are exactly two straight algebras of rank 1 defined
by

A1 =

0 0 0
0 0 0
0 0 1

 and A2 =

0 0 1
0 0 0
0 0 1

 .

Proof. If (a, b) 6= (0, 0), then B(a, b) is isomorphic to A2 by (17) and (18), otherwise A is
isomorphic to A1. Note that A1 is symmetric but A2 is not, hence they are not isomorphic. �

Next, we shall study straight algebras of rank 2. Let

C(a, b, c) = T (a, b, c, 0, 1) =

0 a b
0 1 c
0 0 1
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with a, b, c ∈ K. Any straight algebra A of rank 2 is defined by C(a, b, c) by Corollary 5.3.
Let A5 be the algebra defined by T (1, 0, 0, 0, 0). Let

X1 =

d/h −1/d c/
√
h

0 a/d −b/
√
h

0 1 a/
√
h

 ,

where d = b− ac and h = a2 + b2 − abc. If d 6= 0 and h 6= 0, we have that |X1| = 1/
√
h 6= 0

and
tX1C(a, b, c)X1 = T (1, 0, 0, 0, 0).

Hence, (i) if b− ac 6= 0 and a2 + b2 − abc 6= 0, A is isomorphic to A5. Let

X2 =

1/a 0 c/a
0 1 −c
0 0 1

 .

If a 6= 0, we have |X2| = 1/a 6= 0 and
tX2C(a, ac, c)X2 = T (1, 0, 0, 0, 0).

Thus, (ii) if b = ac and a 6= 0, A is again isomorphic to A5. Let A6 be the algebra defined by
T (1, 1, 1, 0, 0), and let

X3 =

1/b −1/b (b2 − a2)/a2b
0 0 −b/a
0 1 2

 .

If ab 6= 0, then |X3| = 1/a 6= 0 and
tX3C(a, b, (a2 + b2)/ab)X3 = T (1, 1, 1, 0, 0).

Hence, (iii) if a2 + b2 − abc = 0, a 6= 0 and b 6= 0, then A is isomorphic to A6. As the other
case than (i)-(iii) above, we have the case (iv) a = b = 0, and then A has become C(0, 0, c).
Thus, let A4(a) with a ∈ K denote the algebra defined by C(0, 0, a).

Lemma 6.2.

(1) For a, b ∈ K, A4(a) ∼= A4(b) if and only if a = ±b.
(2) For all a ∈ K, A5 6∼= A4(a) and A6 6∼= A4(a).
(3) A5 6∼= A6.

Proof. (1) A4(a) and A4(−a) are isomorphic, because tX0A4(a)X0 = A4(−a) with X0 =−1 0 0
0 0 −1
0 −1 a

. On the other hand, A4(0) is not isomorphic to A4(a) with a ∈ K \ {0}

because A4(0) is symmetric but A4(a) is not.
Suppose that a 6= 0, b 6= 0 and A4(a) is isomorphic to A4(b). Then, by Corollary 2.4 there

is a matrix X = (xij) satisfying

(19) tXA4(a)X = A4(b).

Let X1 =

(
x22 x23
x32 x33

)
, and B(x) =

(
1 x
0 1

)
. Then, by (19) we have

(20) tX1B(a)X1 = B(b).
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Because |X1|2|B(a)| = |B(b)| and |B(a)| = |B(b)| = 1, we see |X1| = ±1. Let Y =(
y11 y12
y21 y22

)
be the matrix in the left hand side of (20). Then, we have{

y12 = x22x23 + (ax22 + x32)x33 = b
y21 = x22x23 + x32(ax23 + x33) = 0.

Hence,

b = y12 − y21 = a(x22x33 − x23x32).

Therefore, b/a = |X1| = ±1, and hence a = ±b.
(2) Note that by Proposition 3.2 A4(a) is a Lie algebra for any a ∈ K but A5 and A6 are

not. Hence, neither A5 nor A6 is isomorphic to A4(a).
(3) Assume that A5 and A6 are isomorphic and there is a nonsingular matrix X = (xij)
satisfying

(21) tXT (1, 0, 0, 0, 0)X = d · T (1, 1, 1, 0, 0)
where d = |X| 6= 0. Let Y = (yij) be the matrix in the left hand side of (21). We thus have

(22)


y12 = x11x22 + x31x32 = d
y13 = x11x23 + x31x33 = d
y22 = x12x22 + x232 = 0
y23 = x12x23 + x32x33 = d.

On the other hand, by (10) we have

jac(A5) = (0, 0, 1)T (1, 0, 0, 0, 0) t(e1, e2, e3) = e3

and

jac(A6) = (1,−1, 1)T (1, 1, 1, 0, 0) t(e1, e2, e3) = e2 + e3.

Hence by Proposition 3.4 we have (0, 0, 1)X = (0, d, d), and so x31 = 0 and x32 = x33. Hence,
by (22)

y12 = x11x22 = y13 = x11x23 = d 6= 0.

It follows that x22 = x23. However, by (22) we get a contradiction

d = y23 − y22 = x12(x23 − x22) + x32(x33 − x32) = 0.

�

As mentioned in the introduction, let us define the equivalence relation ∼ in K by a ∼ b
if and only if a = ±b for a, b ∈ K. By (1) of Lemma 6.2 we have A4(a) ∼= A4(b) if and only
if a ∼ b. Choose and fix a complete set H ⊂ K of equivalence class representatives for K/∼.
This H will appear in the next two sections too. By the above arguments (i) ∼ (iv) and
Lemma 6.2, we have

Proposition 6.3. Up to isomorphism, straight algebras of rank 2 are classified into three
families

A4(a) =

0 0 0
0 1 a
0 0 1

 (a ∈ H), A5 =

0 1 0
0 0 0
0 0 1

 and A6 =

0 1 1
0 0 1
0 0 1

 .
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7. Straight algebras of rank 3

Let A be a straight algebra of rank 3. Then, by Corollary 5.3, we may suppose that A is
defined by

A(a, b, c) = T (a, b, c, 1, 1) =

1 a b
0 1 c
0 0 1


with a, b, c ∈ K. For x ∈ K, let A7(x) = A(x, 0, 0). We have tUA(0, 0, c)U = A7(c) with the

transformation matrix U =

 0 0 1
−c −1 0
1 0 0

. Hence, A is isomorphic to A7(c), if a = b = 0.

Below, we assume that (a, b) 6= (0, 0) and let

h =
√

a2 + b2 − abc and d =
√

a2 + b2 + c2 − abc.

(I) The case where h 6= 0 and d 6= 0. Put

X =

 0 h/d c/d
−a/h (bc− ad2)/hd −b/d

(ac− b)/h ((ac− b)d2 − ac)/hd a/d

 .

Then we have
tXA(a, b, c)X = A7(d),

hence A is isomorphic to A7(d).

(II) The case where h = 0, d 6= 0 and a2 6= c2. In this case, a 6= 0, b 6= 0 and c = (a2+b2)/ab.
Let

Y1 =

(b− ac)/f −a/f 1
c/f ab/cf −b/c
0 f/c a/c

 ,

where f =
√
c2 − a2. Then we have

tY1A(a, b, c)Y1 = A7(c),

hence A is isomorphic to A7(c).

(III) The case where h = 0, d 6= 0, a2 = c2 and a2 6= 4. In this case, c = σa and

b = a(σa+ g)/2, where g = τ
√
a2 − 4 and σ, τ ∈ {1,−1}. Let

Y2 =

 (a− σg)/2g 1/g σ
(2− σag − a2)/2g −(a+ 3σg)/2g −(σa+ g)/2

1 (a− σg)/2 1

 .

Then we have
tY2A(a, b, c)Y2 = A7(a),

hence A is isomorphic to A7(a).
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(IV) The case where h = 0, d 6= 0, a2 = c2 and a2 = 4. In this case, we have

(a, b, c) = (2, 2, 2), (2,−2,−2), (−2,−2, 2) or (−2, 2,−2).

Let A8 = A(2, 2, 2), and then A(2,−2,−2), A(−2,−2, 2) and A(−2,−2,−2) are isomorphic
to A8 with the transformation matrices−1 0 0

0 −2 −1
0 −1 0

 ,

1 0 0
0 −1 0
0 0 −1

 and

1 0 0
0 −2 −1
0 −1 0

 ,

respectively*3.

(V) The case where d = 0 and a 6= 0. Let i =
√
−1 and A9 = A(1, i, 0). First, A(a, b, c)

and A(a, ia, 0) are isomorphic with the transformation matrixi(ac− b)/a ic/a 0
−ic/a −ib/a 0

0 0 1

 .

Secondly, A(a, ia, 0) and A9 are isomorphic with the transformation matrix1 0 0
0 (a2 + 1)/2a −i(a2 − 1)/2a
0 i(a2 − 1)/2a (a2 + 1)/2a

 .

Consequently, A is isomorphic to A9.

(VI) The case where d = 0, h 6= 0 and a = 0. In this case, we have b 6= 0 and c = iσb,
where σ ∈ {1,−1}. Put

Z =

 b (b2 + 1)/2b −i(b2 − 1)/2b
iσb iσ(b2 − 1)/2b σ(b2 + 1)/2b
−1 0 0

 .

Then we have
tZA(a, b, c)Z = A9,

hence A is isomorphic to A9.

(VII) The case where d = 0, h = 0 and a = 0. This case does not occur because (a, b) 6=
(0, 0).

Lemma 7.1.

(1) For a, b ∈ K, A7(a) ∼= A7(b) if and only if a = ±b.
(2) For all a ∈ K, A8 6∼= A7(a) and A9 6∼= A7(a).
(3) A8 6∼= A9.

*3This case is the only one where there are only a finite number of isomorphic algebras of the triangular
form A(a, b, c). Moreover, as we have observed, there were no such cases for B(a, b) nor C(a, b, c). In this
sense, A8 can be called a sporadic zeropotent algebra.



14 Y. KOBAYASHI, K. SHIRAYANAGI, S.-E. TAKAHASI, AND M. TSUKADA

Proof. (1) and (2). First, A7(−a) is isomorphic to A7(a) with the transformation matrix0 1 0
1 a 0
0 0 1

, and if a 6= 0, then A7(0) is never isomorphic to A7(a), A8 and A9 because A7(0)

is symmetric but A7(a), A8 and A9 are not. We thus may assume a 6= 0.
Next, suppose that A = A7(d) is isomorphic to A′ = A(a, b, c), where b, c ∈ K and

a, d ∈ K \ {0}. Because |A| = |A′| = 1, by Corollary 2.3 there is a matrix X = (xij) such
that |X| = 1 and

(23) tXAX = A′.

By (10) we have

(24)

{
jac(A) = (0, 0, d)A7(d)

t(e1, e2, e3) = de3
jac(A′) = (c,−b, a)A′ t(e1, e2, e3) = ce1 + (ac− b)e2 + ae3.

Hence, by Proposition 3.4, (0, 0, d)X = (c, ac− b, a), that is,

(25) dx31 = c, dx32 = ac− b and dx33 = a.

Now, (23) is expanded as

p1 = x211 + dx11x21 + x221 + x231 − 1 = 0
p2 = x11x12 + dx11x22 + x21x22 + x31x32 − a = 0
p3 = x11x13 + dx11x23 + x21x23 + x31x33 − b = 0
p4 = x11x12 + dx12x21 + x21x22 + x31x32 = 0
p5 = x212 + dx12x22 + x222 + x232 − 1 = 0
p6 = x12x13 + dx12x23 + x22x23 + x32x33 − c = 0
p7 = x11x13 + dx13x21 + x21x23 + x31x33 = 0
p8 = x12x13 + dx13x22 + x22x23 + x32x33 = 0
p9 = x213 + dx13x23 + x223 + x233 − 1 = 0.

Then we have

(26) p2 − p4 = d(x11x22 − x12x21)− a = 0,

(27) p6 − p8 = d(x12x23 − x13x22)− c = 0,

and

(28) p3 − p7 = d(x11x23 − x13x21)− b = 0.

Let X1 =

(
x11 x12
x21 x22

)
, X2 =

(
x12 x13
x22 x23

)
and X3 =

(
x11 x13
x21 x23

)
, then by (26), (27) and (28)

we have

(29) |X1| = a/d 6= 0, |X2| = c/d and |X3| = b/d.

(i) Suppose that b = c = 0. Then by (25), x31 = x32 = 0 and x33 = a/d. Hence

1 = |X| = a

d
|X1| =

a2

d2
,

and so we have a = ±d. Therefore, by taking d = b, we are done with (1) of the lemma.
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(ii) Suppose that a = b = c = 2. Then by (25), x31 = x32 = x33 = 2/d. Hence, by (29) we
have

|X| = 2

d
(|X2| − |X3|+ |X1|) =

4

d2
= 1.

It follows that d = 2σ with σ ∈ {1,−1}, and so x31 = x32 = x33 = σ. Therefore,

p1 = (x11 + σx21)
2 = p5 = (x12 + σx22)

2 = 0.

Hence, x21 = −σx11 and x22 = −σx12. Consequently, |X1| = 0, contradicting (29). Therefore
we see that A7(a) and A8 are not isomorphic.

(iii) Suppose that a = 1, b = i and c = 0. By (25) we have x31 = 0, x32 = −i/d and
x33 = 1/d. Hence, we have

|X| = 1

d
(|X1|+ i|X3|) =

1

d

(
1

d
+

i2

d

)
= 0

by (29), a contradiction. Thus, A7(a) and A9 are not isomorphic.
(3) Assume that A9 is isomorphic to A8. Then there is a matrix X = (xij) satisfying

|X| = 1 and
tXA(1, i, 0)X = A(2, 2, 2),

which is expanded as

(30)



q1 = x211 + x21(x11 + x21) + x31(ix11 + x31)− 1 = 0
q2 = x11x12 + x22(x11 + x21) + x32(ix11 + x31)− 2 = 0
q3 = x11x13 + x23(x11 + x21) + x33(ix11 + x31)− 2 = 0
q4 = x11x12 + x21(x12 + x22) + x31(ix12 + x32) = 0
q5 = x212 + x22(x12 + x22) + x32(ix12 + x32)− 1 = 0
q6 = x12x13 + x23(x12 + x22) + x33(ix12 + x32)− 2 = 0
q7 = x11x13 + x21(x13 + x23) + x31(ix13 + x33) = 0
q8 = x12x13 + x22(x13 + x23) + x32(ix13 + x33) = 0
q9 = x213 + x23(x13 + x23) + x33(ix13 + x33)− 1 = 0.

Because jac(A9) = −ie2 + e3 and jac(A8) = 2(e1 + e2 + e3) by the second equation in (24),
we have (0,−i, 1)X = (2, 2, 2) by Proposition 3.4, that is,

(31) −ix21 + x31 = −ix22 + x32 = −ix23 + x33 = 2.

Hence, by (30) and (31), we have

q2 = x11x12 + 2i(x11 + x21 + x22 − i) = 0
q3 = x11x13 + 2i(x11 + x21 + x23 − i) = 0
q4 = x11x12 + 2i(x12 + x21 + x22 − 2i) = 0
q6 = x12x13 + 2i(x12 + x22 + x23 − i) = 0
q7 = x11x13 + 2i(x13 + x21 + x23 − 2i) = 0
q8 = x12x13 + 2i(x13 + x22 + x23 − 2i) = 0.

Thus, we reach a contradiction

0 = (q3 + q4 + q8)− (q2 + q6 + q7) = 2.

�
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By the above arguments (I)∼(VII) together with Lemma 7.1, we obtain

Proposition 7.2. Up to isomorphism, straight algebras of rank 3 are classified into three
families

A7(a) =

1 a 0
0 1 0
0 0 1

 (a ∈ H), A8 =

1 2 2
0 1 2
0 0 1

 and A9 =

1 1 i
0 1 0
0 0 1

 .

8. Summary and Concluding Remarks

By summarizing Propositions 4.1, 6.1, 6.3 and 7.2, the following theorem is obtained.

Theorem 8.1. Up to isomorphism, three-dimensional zeropotent algebras over an alge-
braically closed field of characteristic not equal to two are classified into the algebras

A0, A1, A2, A3, {A4(a)}a∈H, A5, A6, {A7(a)}a∈H, A8 and A9

defined by 0 0 0
0 0 0
0 0 0

 ,

0 0 0
0 0 0
0 0 1

 ,

0 0 1
0 0 0
0 0 1

 ,

 0 1 0
−1 0 0
0 0 0

 ,

0 0 0
0 1 a
0 0 1

 ,

0 1 0
0 0 0
0 0 1

 ,

0 1 1
0 0 1
0 0 1

 ,

1 a 0
0 1 0
0 0 1

 ,

1 2 2
0 1 2
0 0 1

 and

1 1 i
0 1 0
0 0 1

 ,

respectively.

We remark that as easily seen from the proofs, the assumption that K is algebraically
closed can be replaced by the weaker one that K is square-rootable, that is, for any a ∈ K
there exists x ∈ K such that x2 = a.

As a final remark, by Theorem 8.1 and Proposition 3.2, we can obtain a classification of
three-dimensional complex Lie algebras as follows. Up to isomorphism, three-dimensional Lie
algebras over C are classified into the algebras

A0, A1, A2, A3, {A4(a)}a∈H and A7(0),

where H is the half plane {z ∈ C | −π/2 < arg(z) ≤ π/2} ∪ {0}.
While [1] gives the well-known classification of three-dimensional real Lie algebras, [3, 2]

present a classification of three-dimensional complex Lie algebras. They determine such a
Lie algebra L for each dimension of the derived algebra L′ = [L,L], where the dimension
corresponds to the rank of A in our setting. Although there is a difference in the way of
classification between the two, our classification is in accordance with that of [2] by the
following correspondence:

A0 – Type 1
A1 – Type 2a
A2 – Type 2b
A3 – Type 3 (L1)
A4(0) – Type 3 (L2,1)
{A4(a)}a∈H\{0} – Type 3 (L3,d)
A7(0) – Type 4.
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Our future work includes a classification of three-dimensional zeropotent algebras over the
real number field R as well as a field of characteristic 2.
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