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Preface

This document contains answers to all the exercises in ”Linear Algebra with Python
—Theory and Applications—". It is natural for beginners to have a hard time figuring out
what they need to show to get the correct answer that the authors are looking for, and even
if they do figure out what they need to show, where to start. For such beginners, we have
given solutions for each exercise with as few gaps as possible. However, the solutions listed
here are not necessarily the only path to the correct answer for the exercise. The reader with

a deeper understanding should try to create original solutions.
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Exercise 1.1. Show the equivalences
P—-Q < -PVQ and P+ Q & (P—->Q)N(Q—P)

by making the truth value tables for them. Moreover, confirm the equivalences by
Python.

P Q | P|P—->Q|-PVQ
true | true | false true true
true | false | false | false false
false | true | true true true
false | false | true true true

Since the truth values (of shadowed cells) in the columns of P — @ and =P V @ coincide
through every rows, it follows that P — @) < — PV @ holds. If you also add the column of
truth values of (P — Q) <+ (=P V Q) to the above table, you find that all truth values of
the logical formula (P — Q) <> (=P V @) are true. That is, the formula is a tautology. In
general, a formula f (P, P,,..., P,) created from the propositions Py, P, ..., P, and logilal
operators is called a tautology if and only if the truth value of f (P, P,..., P,) is always

true, regardless of the truth values assigned to each P, P, ..., P,.
P Q |P—=>Q|Q—>P P+-Q|(P—->Q N(Q— P)
true | true true true true true
true | false | false true false false
false | true true false false false
false | false true true true true

The truth values in the columns of P <+ @ and (P — @) A (Q — P) coincide through
every rows. Then, the logical formula (P > Q) «+ ((P — Q) A (Q — P)) becomes a
tautology.



Exercise 1.2. Prove the associative laws
(PANQ)ANR & PAN(QAR), (PVQ)VR < PV (QVR)
and the distributive laws

PA(QVR) & (PAQ)V(PAR), PV(QAR) < (PVQ)A(PVR).

In the following truth value tables, these can be verified by looking at the shaded cells.

the associative laws:

P Q R | PANQIQANR|(PANQ)ANR|PA(QANR)
true | true | true true true true true
true | true | false | true false false false
true | false | true | false false false false
true | false | false | false false false false
false | true | true | false true false false
false | true | false | false false false false
false | false | true | false false false false
false | false | false | false false false false

P Q R |PVQIQVR|(PVQ VR PV (QVR)
true | true | true true true true true
true | true | false true true true true
true | false | true true true true true
true | false | false | true false true true
false | true | true | true true true true
false | true | false | true true true true
false | false | true | false true true true
false | false | false | false false false false

the distributive laws:

P Q R I QVR| PANQ| PANR|PA(QVR)|(PANQ)V(PAR)
true | true | true true true true true true
true | true | false | true true false true true
true | false | true | true false true true true
true | false | false | false false false false false
false | true | true | true false false false false
false | true | false | true false false false false
false | false | true | true false false false false
false | false | false | false false false false false
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P Q R I QAR PVQ|PVR|PVQANR)|(PVQ N(PVR)
true | true | true true true true true true
true | true | false | false true true true true
true | false | true | false true true true true
true | false | false | false true true true true
false | true | true true true true true true
false | true | false | false true false false false
false | false | true | false false true false false
false | false | false | false false false false false

Supplementary problem. Prove De Morgan’s law for propositional logic:

- (PANQ) & PV -Q, - (PVQ) & -PA-Q.



Exercise 1.3. Deduce the equalities Oz = 20 = 0 from properties R1-R9.

This follows from the following series of equational transformations using R1-R9:

0z = 20 ( )
= 2040 ( )
= 20+ (20 + (—=0)) ( )
= (20 + 20) + (—20) (by R2)
= x(0+0)+ (—20) ( )
= 20+ (—20) ( )
=0 ( )

Supplementary problem. Deduce the equalities (—1) x (—1) = 1 from properties R1-R9.
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Exercise 1.4. Prove properties Z1—-76 above from properties R1—-R9 of real num-
bers.

Let z = o + iy, 21 = o1 + iy1, 22 = T2 + 1y (T,Y, 1,41, T2, Yo are real numbers, i is the
imaginary unit i = —1).

1.

2z = (z+iy) (v —iy) = 2° — iy +iyz —iyiy = 2> +y* = |2

. 2 . 2
|20 = |(x1 +1y1) (22 + zyg)’ = ‘(xle — y1Y2) + i (2192 + xgyl)}
(122 — y112)° + (T1y2 + 223n)” = 2323 + yiys + 21ys + 2307

= (e1+4]) (x5 +43) = |21 |22/

If 5 below is shown already, 2 can be shown as follows:

|212’2|2 = Z120Z1%2 = Z1%2Z1 %2 = Z1Z1%2%2 = |Zl|2|Z2|2-

3. If z is a real number, then y = 0 and z = x = © — iy = Z. Conversely, if 2 = Z, then
x +1iy = x — 1y. Hence, we get 2iy = 0 and thus y = 0. Therefore, z = x is real.

LHS = (21 +22) +i(y1 +¥y2) = (v1+22) —i(y1 +3y2) = RHS

LHS = (z1+iy) (v2 +iya) = (2172 — y1ya) + 4 (2192 + 22y1)
= ($1$2 - ylyz) —1 (5151?/2 + $2y1) = (xl - iyl) (1E2 - i?/2) = RHS

6. Let 2y = 1 +dy; and 2o = x9 + iy (21,41, X2, Yo are real numbers). Then,

|zi + 22| < 21|+ |22]

12+ 2 £ (Ja]+|2))’

i+ 2|” £ al’ + 2]z + |2l

(1 +22)° + (1 +12)° < 22 +92+ 2|(x1x2 — Y1Y2) + i (x1y2 + x2y1)| + 23+ 3

< 2\/($1$2 —y12)” + (2192 + 221)°
(x129 + y1y2)2 S (mze — y1y2)2 + (z1y2 + 5523/1)2
2T1Toy1ys S TTYs + T3YL

0 = (112 —$2y1)2

22172 + 2Y1Y2

S
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Alternatively, we can prove it as follows:

i+ 2 = (4 2)EF+E) = afitaBh+afitanh = af+ank+ an+nh
= |a1* +2Re(217) + [21]” £ |aal* + 2]z + |l = |21 + 21z 2] + |21
= (ol +[z))

Here we use the facts z +Z = 2Re z and that Re z < |z| for complex number z.
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Exercise 1.5. Prove the following formulas.

(1) eO402) — e for any 6,0, € R (Hint: use the trigonometric addition
theorem).

(2) (¢?)" =e™ (de Moivre’s theorem) holds for any natural number n (Hint:
use mathematical induction).

(1) By Euler’s formula and the addition theorem of cos, we have

LHS = cos (0 + 6;) +isin(6; + 02)
= cos 0 cosfy — sin by sin Oy + i (sin 61 cos Oy + cos 6, sin 65)
= (cosf; +isinb) (cosbhy +isinfy) = RHS

(2) If n = 1, the theorem holds. Suppose that the theorem is true for n = k. Then we
have (eia)k = ¢™*% and also

(eié))k‘H _ (ew)keie — k00 ik0+i0 _ i(k+1)0

is saticefied. The first equality is followed by the power low, the socond is the assump-
tion of the mathematiical induction, and the third equality follows 1. Therefore the
theorem is true for n = k + 1.
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Exercise 1.6. Using Python and its library of Matplotlib, draw the graphs in Figure
1.1.

Program: ps_sin.py (the Maclaurin expansion of sin )

In [1]: from numpy import linspace, pi, sin

import matplotlib.pyplot as plt

x0, x1, yO, yl1 = -2%pi, 2*pi, -5, 5

1
2
3
4
5 |X = linspace(x0, x1, 100)

©

[ | plt.axis('scaled'), plt.xlim(x0, x1), plt.ylim(yO, y1)
8 plt.plot(X, sin(X))

9 |plt.plot (X, X)

10 plt.plot(X, X - X*%3/6)

11 |plt.plot(X, X - X*%*3/6 + X**5/120)

12 |plt.show ()

Program: ps_cos.py (the Maclaurin expansion of cos x)
In [1]: from numpy import linspace, pi, cos
import matplotlib.pyplot as plt

]
2
3
4 1x0, x1, yO, y1 = -2%xpi, 2%pi, -5, b

5 |X = linspace(x0, x1, 100)

[ |plt.axis('scaled'), plt.xlim(x0, x1), plt.ylim(yO, y1)
8 |plt.plot (X, cos(X))

9 |plt.plot(X, X*x0)

10 | plt.plot (X, X*x*x0 - X*%*2/2)

11 | plt.plot (X, X**x0 - X*x2/2 + Xxx4/24)
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In [1]: 12 ‘plt.show()

Program: ps_exp.py (the Maclaurin expansion of e*)

In [1]: 1 | from numpy import linspace, pi, exp
2 |import matplotlib.pyplot as plt
3
4 1x0, x1, yO, yl = -2%pi, 2%pi, -5, 5
5 |X = linspace(x0, x1, 100)
6
7 plt.axis('scaled'), plt.xlim(x0, x1), plt.ylim(y0, yi1)
8 | plt.plot(X, exp(X))
9 plt.plot(X, X**0)
10 |plt.plot (X, X*xx0 + X)
11 |plt.plot (X, X**x0 + X + Xx*%*2/3)
12 | plt.show ()

|
)]

|
IS

|
N
o
N
IS
)]
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Exercise 1.7. Write down the extensional description of the power set 2t1:%3} " Also,
prove that the number of elements of the power set of a set with n elements is 2".

2{1’2’3} = {@, {1} ) {2} ) {3} ) {17 2} ) {173} ) {273} ) {17273}}'

Let A be a set consisting of n elements. One subset B of A is determined by whether
each element of A is included or not. Hence, the total number of these cases is 2". This
number is also equal to the number of integers that an n-bit binary number can represent.
The following table maps a subset of 2123} to one of 2% integers.

1 2 3
glo 0 00
{3y/0 0 11
{2210 1 02
{2,3110 1 1|3
{1}[1 0 04
{1,3}[1 0 1[5
{1,2}[1 1 06

{1,2,3} |1 1 1|7

Another idea is that the number of combinations that extracts k piaces from n pieces is
as ,Cg, so it is calculated as follows using the binomial theorem.

Supplementary problem:
1. Write down the extensional description of (2{1’2})2.

2. Write down the extensional description of 2{1,2}*
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(AUB)N(AUC).

Exercise 1.8. Prove the equalities AN(BUC) = (ANB)U(ANC) and AU(BNC) =

CHAPTER 1. MATHEMATICS AND PYTHON

The former follows from the following series of logical equivalence transformations:

re AN(BUC)
(xe A)A(x e BUC)

(ze A)A((x e B)V(ze0))
z€B))V((xeA)V(zel))

&
&

& ((zeA)A(
& (reANB)V(re ANC)
& rze€(ANB)UANC)

We can show the latter similarly.

re AU (BNC)
(xe A)V(re BNC)

((x€A)v(
(xeAuB) (xe AUC)
c(AuB)N(AUCQ)

II@@II@

(xeA)V ((x e B)A(z € 0))
z€B))A((xeA)V(zel))

creXNYe(zeX)AN(reY))
reXUY e (xeX)V(reY))
"PAN(QVR)= (PANQ)V(PAR))
S(reX)AN(zeY)esreXnNY)
c(reX)V(reY)ere XUY).

~— Y~ 0~ ~~

creXUY e (zeX)V(reY))
creXNYe(xeX)AN(xeY))
“PV(QAR)& (PVQ)A(PVR))
S(reX)V(zeY)sre XUY)
creX)N(zeY)ereXNY).

— — — — —

Supplementary problem. Prove De Morgan’s law for set theory:

(AnB)

—A'uBt, (AuB)® =AnBt



17

Exercise 1.9. Prove the above fact on the size of the power set YX.

Let consider a mapping f € YX. Since f (x) can be assigned to any element of Y, there
are n different ways of assigning for each x € X where n is the number of elements of Y. Since
x moves over a total of m elements of X, we can consider n™ possible different mappings f.

X Y

N
<
N
IR
e

The set of red arrows in the above graph represents an example of mappings from X to
Y. Each point of X must have only one arrow emitted from it. On the other hand, there
may be a point in Y that none of the arrows reach, or two or more may reach a single point
in Y. Therefore, one arrow emitted from the point of X can reach one of any points of Y
independently of the other arrows.

Supplementary problem:
1. Suppose m > n, count the number of surjections from X onto Y.
2. Suppose m = n, count the number of bictions from X onto Y.

3. Suppose m < n, count the number of injections from X into Y.
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Exercise 2.1. Explain the geometrical meaning of Axioms (b)—(h) in the linear
space in Example 2.1.

w oz
(ab)¥ = a(b¥) g 1z
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Exercise 2.2. Using vec3d.py, check the other axioms of linear space.

Program: axioms3d.py

In [1]: 1 |from vpython import *
2
o = vec(0, 0, 0)

5 |def axiom_a(x, y):

6 arrow(axis=x, color=color.red)

{ arrow(axis=y, color=color.green)

8 arrow (axis=x+y, color=color.yellow)
9 arrow (axis=y+x, color=color.yellow)
10 print (x+y, y+x)

12 | def axiom_b(x, y, z):

13 arrow(axis=x, color=color.red)

14 arrow (axis=y, color=color.green)

5 arrow(axis=z, color=color.blue)
arrow(axis=(x+y)+z, color=color.white)
arrow (axis=x+(y+z), color=color.white)
print ((x+y)+z, x+(y+z))

—_
p—

N =
O © o ~

def axiom_c(x):
arrow(axis=x, color=color.red)
arrow (axis=x+o, color=color.green)
print (x, x+o)

W N =

def axiom_d(x):
arrow(axis=x, color=color.red)
arrow(axis=-x, color=color.green)
print (o, x+(-x))

Y Ot

DN NN DN DN DN
(@) >~

BN DN
S © 00

def axiom_e(a, x, y):
arrow(axis=x, color=color.red)
arrow(axis=y, color=color.green)
arrow (axis=a*(x+y), color=color.yellow)

X o~

P o e e o ol
(@]

4 arrow (axis=a*x+a*y, color=color.yellow)
print (ax(x+y), a*x+taxy)

6

7 |def axiom_f(a, b, x):

8 arrow(axis=x, color=color.red)

9 arrow (axis=(a+b)*x, color=color.yellow)

40 arrow (axis=a*x+b*x, color=color.yellow)

11 print ((a+b) *x, a*x+b*x)

12

13 |def axiom_g(a, b, x):

44 arrow(axis=x, color=color.red)

45 arrow (axis=(a*b)*x, color=color.yellow)
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arrow (axis=a*(b*x), color=color.yellow)
print ((axb)*x, ax(b*x))

def axiom_h(x):
arrow(axis=x, color=color.red)
arrow (axis=1*x, color=color.yellow)
print (x, 1x*x)

x = vec(l, 2, 3)
y = vec(l, -1, 2)
z = vec(l, 0, -3)
a = 2

b =3

axiom_b(x, y, z)

Lines 55—61: Check Axiom (b).
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Exercise 2.3. Prove the following:
n

(1) z+=x Tt = nx, (hint: use Axioms (f), (h) and mathematical induc-
tion)
r y bx+ay
) ab#0=> —+ = = ——
(2) ab# 0= —+7 T

(3) If & # 0, then ax = x = a =1,
(4) If ¢ # 0, then ax = bx = a =1D.

D ext+trx=le+le=(1+1)z =2z
(2) This assertion is true for n = 1. Suppose it is true for n = k. Because

E+1 k
T+x+ -+ =T+x+ -+t = kr+x = kx+lz = (k+ 1)z,

the assertion is true for n = k 4+ 1. Therefore the assertion is true for any natural
number n.

(3) Suppose ab # 0. Then

1 1 1 1 b+a
LH = _ —_ = —_ —_ =
S CLar:—irbb (a+b)az T

_ (%(b—ka))w = ~((b+a)e) = RHS.

(4) If ax = x, we have ax — x = 0 and then (¢ —1)x = 0. Since  # 0, a — 1 = 0 must
hold and therefore wehave a = 1.

(5) If ax = ba, we have ax — bx = 0 and then (a —b)x = 0. Because ¢ #0,a —b =0
must hold and then we have a = b.
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Exercise 2.4. Prove that K" satisfies Axioms (b)—(h).

Let denote
T (A1 21
N 1) . Y2 . 22
xr = s y oy . s z =
(b)
1+ Y Z (x1+31) + 21 x1 + (g1 + 21)
. . N To + Yo 29 (132 + yg) + 29 To + (yz + Zg)
(T+9)+7 = ] = . = .
Tn + Yn Zn (Tn 4 Yn) + 2n T A (Yn + 2n)
Y1+ 21
. Y2 + 22 . L
= T+ : = T+ (y+72)
UYn + 2n
(c)
1+ 0 T
L - o+ 0 To .
z, +0 Tn
(d)
—I 1+ (—x1) 0
- Ty + (—x 0 R
PEEE S ] B 2l I )
—T, Ty + (—x,) 0
(e)
T+ a(zy + 1) axry + ay az, ay;
L T2+ Y2 a(xy + y2) ary + ays axy ays
a(@+y) = a : - : = . = + 1 .
Tn + Yn a(Tn + Yn) axyn + ayy aty, aYn



(a+b) xq ary + bxy ar, by

a+bx axrq + bx ax bx
(a+0)7 = R I ] I e I L R
(a+0b)z, ax, + bx, ax, bx,,
(ab) 4 a (bxy) by
ab) z a(bx bx
(ab)Z = ( ? 21 = <,2) = a .2 = a (b
(ab) z,, a (bz,) bx,,
1513'1 T1
11’2 )
17 = = = 7

1z, T
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Exercise 2.5. Check that K¥ satisfies Axioms (b) — (h).

Suppose f, g, h € K¥X.
(b) Since

(f+9) (@) +h(x) = (f(x)+g@)+f(z)
f@)+(g@)+ f(x) = f(x)+(9+h) ()
(f+(g+h)(x)

for all z € X, we have (f+¢g)+h=f+ (g +h).

((f +9)+h) ()

(c) Since
(f+0)(z) = f2)+0(x) = f(x)+0 = f(z)
for all z € X, we have f +0 = f.

(d) Since
(f+(=N) @) = f@)+ (=) (@) = f@)+(-f() =0 = 0()
for all z € X, we have f + (—f) = 0.
(e) Since

(a(f+9) (@) = alf+9)(2) = a(f(x)+g(2) = af (z) +ag(z)
= (af)(x) + (ag) (x) = (af +ag)(z)

for all x € X, we have a (f + g) = af + ag.
(f) Since
((a+9)f) (x) = (a+b) f(z) = af (@)+bf (x) = (af) () +(f) () = (af + ag) ()
for all z € X, we have (a +b) f = af + bf.
(g) Since
((ab) f) () = (ab) f () = a(bf (@) = a(vf)(x) = (a(bf)) (x)
for all z € X, we have (ab) f = a (bf).

(h) Since
1) (x) = 1f () = [f(2)
for all x € X, we have 1f = f.
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Exercise 2.6. Using the above program, observe the shapes of graphs of the functions
for different n. In particular, choose n around 500 and around 1000.

For example, the following program checks the shape of the graph when n = 499, 500, 501.

Program: cfunc.py

CO 3 O UL i W N

e e T
=~ WD = OO

from numpy import exp, pi, linspace
import matplotlib.pyplot as plt

£
t

lambda n, t: exp(lj * n * t)
linspace(0, 2 * pi, 1001)

fig = plt.figure(figsize=(7, 7))
ax = fig.add_subplot(111l, projection='3d')
ax.set_x1im (0, 2xpi), ax.set_ylim(-1, 1), ax.set_zlim(-1, 1)
for n in [100, 101]:
z = f(n, t)
ax.plot(t, z.real, z.imag)
#az.scatter(t, z.real, z.imag,s=1)
plt.show ()

When viewed as a line graph (using plot-method), the large, violently oscillating curve

looks almost like a curved surface (the left figure). If we don’t connect adjacent points with
lines (using scatter-method), the plotted points will appear to be continuous curves (the
right figure).
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Exercise 2.7. Prove that S1 and S2 are equivalent to the following condition.
S5. ax + by € W for any a,b € K and for any ¢,y € W.
Furthermore, for a subspace W, prove that
a1y + asxs + -+ apx, €W

for any aq,as,...,a, € Kand @y, xs,...,x, € W.

Suppose that W satisfies S1 and S2. Let a,b € K and x,y € W. From S2, we have
ax,by € W. and then ax + by € W follows S1. Conversely, suppose that W # () satisfies
S5. When a = b =1, S1 is derived and when b = 0, S2 is deraived.

The second half is based on mathematical induction. Let W be a subspace. W satisefies
the condition for n = 1 by S2. Suppose that W satisefies it for n < k. By the assumption of
mathematical induction a @1 + asxs + - - - + arx, € W and also ag 1@k € W. By using S1
we get

a1 Ty + Aoxoy + -+ - + T + a1 Trr1 = (@@ + a®o + -+ - + apxy) + a1y € WL

Hence, W satisfies the condition for n = k + 1.
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Exercise 2.8. Prove that {(z,0) | # € K} and {(z,z) | € K} are subspaces of K?.

def

Wy = {(x,0) ‘ x € K} is a non-empty subset of K? because (0,0) belongs to W;. Since

a(z,0)+b(y,0) = (ax+by,0) € Wy

for a,b,x,y € K, it follows that W is closed under the linear combination. Thus, W is a

subspace of K2.

def
W2 =

(z,2) | « € K} is a non-empty subset of K* because (0,0) belongs to W5. Since
a(z,x)+b(y,y) = (ax+by,ax +by) € Wy,

for a,b,x,y € K, it follows that Wy is closed under the linear combination. Thus, W is a
subspace of K2.
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Exercise 2.9. Explain geometrically why subspaces of a plane and space are given
as above.

We first consider a subspace of the palne R2. {6} is a trivial subspace of R?. Suppose
a subspace W of R? contains a vector #' other than the zero vector. Then, all vectors on
the straight line [ passing through the origin on which ¢ lies are scalar multiples of ¢, and [
includes the origin and is closed with respect to a linear combination. Thus, [ is a subspace.

<!

=N
8

Suppose a subspace contains two vectors @ and ¢ that are not collinear through the
origin. Let [ and m be the straight lines through the origin on which @ and v lie, respectively.
Consider a vector w that does not lie on either [ or m. The point where a line passing through
w and parallel to m intersects [ can be written as au, and the point where a line passing
through « and parallel to [ intersects m can be written as bv. Since W = au + bv, any vector
on R? can be written as a linear combination of @ and #. So if the subspace is neither trivial
nor a straight line through the origin, it is R?.

ia
au ™

Next we consider a subspace of the sapce R?. It follows from consideration of the case of
R? that the set consisting of only the origin, lines through the origin, and planes through the
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origin are all subspaces. Let the subspace W contain the plane C' through the origin and the
vector v not on C. All points on the line [ through the origin containing ¢ are vectors in the
subspace W. Consider the vector @ in R? that belongs to neither C' nor . The point where
the plane parallel to C' and passing through w intersects [ is the vector of W. The point
where the line parallel to [ and passing through @ intersects [ is also the vector of W. Since
w can be written as the sum of these two vectors, w is the vector of W. So W is equal to
the whole of R3. So if the subspace is neither a line through the origin nor a plane through
the origin, it is the whole space R3.
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Exercise 2.10. Prove that ﬂ W, is a subspace of V.
iel

For any ¢+ € I, W; is a subspace and 0 € W;, so 0 € ﬂ W; and ﬂ W; is not an empty

iel iel

set. It suffices to show that (]VVZ is closed under the linear combination. Let a,b € K
el

and x,y € ﬂ W;. Fix an arbitrary ¢ € I. Since W; is a subspace and x,y € W;, we have

el
ax + by € W,;. Here, ¢ € I was arbitrary, so ax + by € ﬂ W; holds.
iel
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Exercise 2.11. Prove that for a subspace W of V, the complement Wt can never be
a subspace of V. Moreover, for subspaces W and Wy of V', does W1 U W, or Wy \ Wy
become a subspace ?

Neither W nor W, \ W5 can be a subspace because they never have the zero vector.

W1 U Wy cannot be a subspace unless W; and W5 are contained in the other. This can
be shown as follows. Suppose that W; U W5 were a subspace. Chose wy, wo¥inV such that
wy, € Wi, wy € Wo,wy € Wy, wy & Wy, then wy + wy € Wi U W5, So here we don’t lose
generality as w; + wy € Wi. However, ws = (w; + ws) + (—w;) € W, so a contradiction
is.
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Exercise 2.12. Show that M1 and M2 are equivalent to the following condition.
M5. f(ax+by) = af (x)+0bf (y) for any a,b € K and ¢,y € V.
Moreover, prove that a linear mapping f satisfies

f a1y + ases + -+ + apey,) = arf (x1) +asf (x2) + - + an f (x,)

for any aq,as,...,a, € Kand x,xs,...,x, € V.

Suppose that f saticefies M1 and M2. For any a,b € K and ,y € V,

flox+by) = flax)+ f(by) = af (x)+ f(y).
Hence f saticefies M5. Conversely, suppose that f saticefies M5. For any x,y € V taking
a=b=1
flax+by) = fle+ly) = 1f () +1f(y) = f(x)+f(y).
Thus M1 is derived.
Foranyae Kand x € V
flax) = f(aw+0x) = af (x) +0f (x) = aof (z).

Hence M1 holds.
The latter half follows from mathematical induction. When n = 1, the assertion is true
by M2. Suppose that it is true for n = k. Then

flaixy + asxs + -+ + apxy + Ap1TE11)
= flamx +axa+ -+ apxy) + f (ap41Tr41)
= arf(x1) +asf(z2) + -+ anf () + i f (Tpp) -

The first equality follows from M1. The second one follows from the assumption of mathe-
matical induction and M2. Hence the assertion is true for n = k + 1.
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Exercise 2.13. Prove that the scalar multiple of a linear mapping and the compo-
sition of linear mappings are linear mappings.

Let c € K and also f : V — W be a linear mapping. Since

(cf) (ax +by) = cf (ax+by) = c(af () +bf (y))
= alcf (®)) +b(cf (y) = alcf)(®)+b(cf)(y).

for any a,b € K and @,y € V, the scalar multiple cf of f is a linear mapping.
Let both f:V — W and g : U — V be linear mapping. Since

(fog)(ax+by) = f(g(ax+by)) = f(ag(x)+bg(y))
= af(g(x)) +0f(g(y)) = a(fog)(x)+b(fog)(y).

for any a,b € Kand @,y € U, the composition fog: U — W of f and g is a linear mapping.
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Exercise 2.14. Prove Axioms (a)-(h) of linear space for L (V,W).

Let f,g,h € L(V,W).
(a) Since

(f+g9)(x) = f(z)+g(z)
= g(x)+ f ()
(g+ f)(z)
forall x € V, we have f+g =g+ f.

Note that L (V,W) C WV. Hence, (b)—(h) follow from Exercise 2.13 and Exercise 2.5.
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Exercise 2.15. For given constants a,b,c,d € R define the mapping f : R? — R?
by sending (z,y) € R? to (u,v) € R?, where (u,v) is determined by

u = ax-+by
v = czr+dy.

Prove that f is a linear mapping. In particular, in each of the cases (a,b,c,d) =
(1,2,2,3) and (a,b,c,d) = (1,2,2,4) determine the kernel and the range of f.

Since
f((:v, y)) = (ax + by, cx + dy),

we have

f (@1, ) + (22,52)) = f(($1 + T2, Y1 + y2))

(a (14 x2) + 0 (y1 +y2), ¢ (@1 + 22) + d (Y1 + 12))
((azq1 + by1) + (aza + bys) , (cx1 + dyr) + (cx2 + dys))
(azy + byy, cxy + dyr) + (axe + bya, cxa + dys)

= f((xlayl)) + f((x2ay2))~

This says that f preserves the vector addition. Preserving the scalor multiplication follows
from

f(a (z, y)) = f((oza:, ay)) = (aazx + bay, cax + day)
= a(ax+by,cx+dy) = af((z,y))

for any a € R.
Let (a,b,c,d) = (1,2,2,3). Since f((z,y)) = (z + 2y, 2z + 3y) and

kernel (f) = {(z,y) | #+ 2y = 0,2z + 3y = 0},
by solving the simultaneous equations

r+2y =0
20 +3y = 0’

we have x = y = 0. Thus kernel (f) consists of only the origin. On the other hand,
range (f) = {(u,v) ‘ there exist z,y € R such that u = z 4+ 2y,v = 2z + 3y},
and for any (u,v) € R? solving the simaltaneous equations

r+2y = u
20 +3y = v
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of z,y, we get © = —3u + 2v,y = 2u — v . This says that range (f) is the whole space R.
Let (a,b,c,d) = (1,2,2,4). Since f((z,y)) = (z + 2y, 2z + 4y),

kernel (f) = {(z,y) | # + 2y = 0,2z + 4y = 0},

solving simaltaneous equation
r+2y = 0
20 +4y = 07

of z and y, every (x,y) with z+2y = 0 is the solution. Hence, kernel (f) is the line z+2y = 0.
On the other hand,

range (f) = {(u,v) ‘ there exist z,y € R such that u = z + 2y, v = 2z + 4y }.

Let  and y move arbitrarily on R and consider v and v satisfying the simultaneous equation

r+2y = u
2r+4y = v

Then u moves whole R and v always takes the value of twice u. Hence range (f) is the line
y = 2.



Exercise 2.16. Consider the set V = {ax2 +bx +c ‘ a,b,ce R} of all constant,
linear and quadratic functions.
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(1) Prove that V is a linear space over R.
(2) Prove that W = {az + b | a,b € R} is a subspace of V.

(3) For a function f € V, D(f) denotes the derivative f’ of f. For example,
D(1) =0, D(x) =1, D(z?%) = 2z. Prove that D : V — V is a linear mapping.

(4) Determine range (D) and kernel (D).

(3)

Vector sum:
(12 + bz + 1) + (a22® + boz + o) = (a1 + az) 2° + (b1 + ba) z + (1 + )
Scalor multiple:
o (az® + bz + ¢) + (aza® + box + ¢2) = aaz® + abz + ac

The zero vector:
0 = 022 +0x+0

The inverse vector:
—(az® +br+¢) = (—a)z® + (=b)z + (—¢)

According to the laws concerning the four arithmetic operations of symbolic expressions,
we have axioms (a)—(h) easily.
Since ax + b = 022 + ax + b € V, we have W C V. Furthermore, 0 € W and

a(arr +by) + B (azx + b)) = (aay + Bag) x + (aby + aby) € W,
so W is a subspace of V.
If f=a12?+bz+c and g = asw? + byx + ¢y, then from the polynomial differentiation
formula we get

D(af+8g) = (a(ma’®+bix+cr)+ B (a22” + byx + 02)),

= ((cay + aaz) 2* + (aby + aby) z + (ac; + 0402))/

2 (aay + aag) x + (aby + aby)
= a(2a1z + by) + B (2a2x + be)
= « (a1x2 + bix + cl)/ + 0 (a2x2 + byx + cg)/
= aD(f)+ 5D (9)

and the linearity is shown.

(4) range (D) is the whole W of polynomials of maximum degree 2 or less. kernel (D) is a

set of all constant functions.
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Exercise 3.1. Express T as a linear combination of the vectors in A in each case
below, and check your solution by solving it by SymPy. Moreover, draw & and the
vectors in A using Matplotlib in case 1 and using VPython in case 2.

(1) # = (17,-10), A= {(5,-4), (4,-5)}.
(2) &= (-16,1,10), A= {(1,0,0), (1,1,0), (1,1,1)}.

(1) Let
(17,-10) = a(5,—4) +b(4,—5).

Since
LHS = (5a+ 4b,—4a — 5b),

we have the following simultaneous equations

Sa+4b = 17 (1)
—da—5b = —10 e (2)

of unknown variables a and b. In order to eliminate a, from (1) x 4 4+ (2) x 5 we have

200 +16b = 68
+) —20a—25b = —50
—0b = 18

and get b = —2. Substituting it in (1), from
da—8 = 17
we get a = 5. Hence
(17,—10) = 5(b,—4) —2(4,-5).
Program: vec2d.py

from numpy import array
import matplotlib.pyplot as plt

o

(o
X
A

array ([0, 0])
array ([17, -101)
[array ([5, -41), array([4, -51)]

(LRI JU

(@2}

oo

def arrow(v, c):
plt.quiver (0, 0, v[0], v[1], color=c, units='xy', scale=1)

—
o ©

11 |fig = plt.figure(figsize=(5, 5))
12 |plt.axis('scaled'), plt.xlim(-10, 30), plt.ylim(-25, 15)
13
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In [1]: 14 |arrow(x, 'r')
15 |arrow(A[O], 'g")
16 |arrow(A[1], 'b')

17

18 |arrow (6%xA[0] - 2xA[1], 'r")

19 larrow (5*A[0], 'g')

20 larrow(-2*%A[1], 'b')

21

22 | plt.show ()

23  #plt.savefig('vec2d.pdf')

Lines 22, 23: If you comment out line 22 and remove the comment out in line 23, the image
will be saved with the specified file name. As in this example, if the file extension is pdf (resp.
jpg or png), the image will be saved as a pdf (resp. jpg or png) file.

15

10 A

_10_

—15 41

_20 4

_25 T T T T T T T
-10 -5 0 5 10 15 20 25 30

(2) Let
(—16,1,10) = a(1,0,0) +b(1,1,0) + c(1,1,1).

Since
LHS = (a+b+¢c, b+c, c),

we have simultaneous equations

a+b+c = —16 -~ (1)
b+c = 1 - (2)
c = 10 - (3)

of a,b and ¢. From (3), ¢ = 10. Substituting this to (2), b+ 10 = 1 and b = —9. Further
substituting this to (1), @ — 9+ 10 = —16 and then a = —17. Therefore

(—16,1,10) = —17(1,0,0) — 9(1,1,0) 4+ 10(1,1,1).
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Program: vec3d.py
from vpython import *

x = vec(-16,1,10)

A [vec(1,0,0), vec(1,1,0), vec(1,1,1)]
arrow (axis=x, shaftwidth=0.2)

arrow (axis=A[0], color=color.red)

arrow (axis=A[1], color=color.green)
arrow(axis=A[2], color=color.blue)

arrow (axis=-17*A[0] -9*%A[1]+10*xA[2], shaftwidth=0.2)
arrow (axis=-17*A[0] , color=color.cyan, shaftwidth=0.2)
arrow (axis=-9*%A[1], color=color.magenta, shaftwidth=0.2)
arrow(axis=10%A[2], color=color.yellow, shaftwidth=0.2)

#input ('Hit Enter key')
#scene.capture('vec3d')

Lines 15, 16: If you uncomment this line, the image displayed in the browser will be saved
in the specified file in png format when you press the Enter key in the shell window after
changing the viewpoint or scaling with the mouse. It is saved with the name vec3d.png (the
extension is automatically added). The file is saved in the download file save folder specified
by the browser.
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Exercise 3.2. Solve the equations (a) and (b) by hand, and decide if they are linearly

independent.
r + 2y + 3z = 0 - (1)
()¢ 22z + 3y + 4z = 0 - (2)
3z + 4y + 5z = 0 - (3)
(1) x 2 —(2):
22 + 4y + 62z = 0
-) 2z + 3y + 4z =0
y + 2z =0 e (4)
(1) x 3 —(3):

3z + 6y + 9z = 0
—-) 3z + 4y + 5z =0
2y + 4z = 0 -+ (5)

Here (4) and (5) are equivalent. For example, by substituting the pair y = 2, 2 = —1 which
satisfis them to (1) (or (2) or (3)) we have x = 1. Hence we get

1(1,2,3) +2(2,3,4) + (—1) (3,4,5) = (0,0,0)
and we can conclude that {(1, 2,3),(2,3,4), (3,4, 5)} is linearly independent.

r + 2y + 3z = 0 - (1)
(byg 22 + 3y + =z =0 - (2)
3z + y + 2z = 0 - (3)
(1) x 2 —(2):
2z + 4y + 62z = 0
-) 2z + 3y + z =0
y + 5z =0 e (4)
(1) x 3 —(3):
3r + 6y + 9z = 0
-) 3z + y + 2z =0
S5y + 7z = 0 - (5)
(4) x 5 — (5):

5y + 25z = 0
-) S5y + Tz =0
18z = 0
Henve z = 0. Substituting it to (4) we have y = 0 and the doing it to (1) we have z = 0.
Therefore,

0(1,2,3)+0(2,3,1)+0(3,1,2) = (0,0,0)
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is a unique expression, so that {(1, 2,3),(2,3,1), (3,1, 2)} is linearly independent.
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Exercise 3.3. Let X be a basis of V. Prove the following facts.

(1) A set obtained by adding a new vector to X or removing any vector of X is no
longer a basis of V.

(2) A set obtained by replacing any vector of X with its nonzero scalar multiple
remains a basis.

(3) A set obtained by replacing any vector of X with a sum of it and a scalar
multiple of another vector of X remains a basis.

(1) For any v € V, consider Y =5'qU {v}. Since X generates V', v is writen as a linear
combination of vectors in Y. Hence Y is dependent and can not be a basis of V. On the
other hand, for and v € X, consider Y ©x \ {v}. Since X was independent, v can not be
written as a linear combination of vectors in Y. Hence Y does not generate V' and can not

be a basis of V.
(2) Let X = {1, x2,...,x,} be a basis and ¢ # 0. If

a1 + ag®y + -+ -+ a;c; + - +ape, = 0,
then
ag = ay = -+ = qc = -+ = a, = 0.
Because ¢ # 0, we have a; = 0. Therefore, {x1,xs,...,cx;, ..., @, } is linearly dependdent.

Let y € V be arbitrary. Then,

Y = @1 +ax2+ -+ a;x; + -+ an®y,
for some ay,as,...,a, € K. Since ¢ # 0, we have
Q;
Y = 1Ty + ATy + o+ —CT s+ ApTp.
c
Thus, {x1,x,...,cx;, ..., &, } spans V.

(3) Consider any pair of different vectors v,w € X and put u L » + aw for some a € K.
Let Y be the result of removing v from X and adding w in it, that is

Yd:ef(X\{v})U{u} = {y17y27"’7yn}7

where y; = v and y, = w. First we will show that Y is linear independent. Let
b1y, +b2yy + -+ buy, = 0
Then

by (v+aw) +bow+ -+ by, = v+ (aby +b)w+---+byy, = 0.
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Since X is independent, we have
bl = ab1+b2 = bg = - = bn =0

and also by = 0. Thus, Y is independent. Next,we will show that Y generates V. Since X
generates V', for any @ € V there extst ¢q,cs,..., ¢, € K such that

T = U+ W+ C3Ys+ -+ Y,
Recalling v = u — aw, we have
T = cu+ (= ac)w+ Yz + -+ Gy,

Since & € V' was arbitrary, this says that Y generates V.



Exercise 3.4. Let V and W be linear spaces and let f : V — W be a linear
isomorphism. Let X = {vy,vs,...,v;} C V. Prove the following facts.
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(1) If X generates V, then f(X) = {f (v1),f (ve),..., f (vr)} generates W.
(2) If X is linearly independent, then so is f(X).
(3) If X is a basis of V| then f(X) is a basis of W.

(3)

Let w € W be arbitrary. Because f is surjective, there exists v € V such that
w = f (v), Since {v,vs, ..., v} generates V, we have

V = a1V1 + agVs + -+ + ApVk.

hence

w=fw)=f(av; +aws+ -+ avg) = a1 f (v1) +asf (va) + - -+ ap f (V).

That is, w € W can be written as a linear combination of { f (v1), f (va),..., f (vk)}.
Hence, w € Wwas arbitrary, {f (v1), f (va),..., f (vr)} generate W,

Let
a1 f (v1) +aof (v2) + -+ ar f (vr) = Ow.
Then
f (CL1’01 + avy + -+ + akvk) = f (Ov) .

Bacause f is injective,we have
a1v1 + aVy + -+ - + apvr = Oy.

Since {v,vs, ..., v} is linear independent, we get a; = as = -+ = ap = 0. Thus,
{f (v1), f(va),..., f(vg)} is independent.

This follows from (1) and (2)..
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Exercise 3.5. Let V be the linear space of all polynomials in z of degree up to 2
with real coefficients. Prove that { 2% + 2z + 3, 22% + 3z + 1, 32® + x + 2 } becomes
a basis of V. Moreover, represent 2 — 2x + 1 as a vector in R? on this basis.

Because {z?%,r,1} is a base of V, the dimension of V is 3. Hence if
{x2+2x+3, 22 + 3z + 1, 39(;2—1—:6—1—2}
which has three elements of V' is linear independent, it must be a basis of V. Let
a(x®+22+3)+b((22° +3x+1) +c(32*+2+2) = 0.

Since
(a+2b+3c)x* + (2a+3b+c)x+ (3a+b+2c) = 0,

we have simaltaneous equations

a + 2b + 3¢ =0 - (1)
2 + 3b + ¢ =0 - (2)
da + b + 2¢ =0 -+ (3)
of unknown variable a,b and c.
(1) x 2 —(2):
20 + 4b + 6¢c = 0
-) 2a + 3b + ¢ =0
b + 5¢ = 0 e (4)
(1) x 3 —(3):
3a + 60 + 9¢ = 0
—-) 3a + b 4+ 2¢ =0
5b + T7c¢ = 0 - (5)
(4) x 5 — (5):

5b 4+ 25¢ = 0
-) 5b + Tc =0
18¢c = 0
We first get ¢ = 0. Secondly, by substituting it to (5), we have.b = 0. Finally, by substituting

them to (1), we have a = 0. Thus the linear independency has been shown.
We show the latter. Put

22 +1 = a(z2—|—2x—|—3)+b(2x2+3m+1)+c(3x2+x+2)
= (a+2b+3c)2® + (2a+3b+c)x+ (3a+ b+ 2c).

Hence we have simaltaneous equations

a + 2b + 3¢ = 1 - (1)
2¢ + 3b + ¢ = — e (2)
3Ja + b + 2¢ = 1 - (3)
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of unknown variables a, b and c.

(1) x 2 —(2):
2a¢ + 4b + 6¢c = 2
-) 2a + 3b + ¢ = -2
b + 5¢ = 4 e (4)
(1) x 3 —(3):
3Ja + 6b + 9¢ = 3
-) 3a + b 4+ 2¢ =1
5b + Tc = 2 )
(4) x 5 —(5):
5b + 25c¢ = 20
-) 5b + Tc = 2
18¢ = 18

We first get ¢ = 1. Secondly, by substituting it to (4), we have b = —1. Secondly, by substi-
0

tuting them to (1), we have a = 0. Therefore the vector | —1 ] 3 is the representation
1

of 22 — 2x + 1.
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Exercise 3.6. (1) Prove that W above is a subspace of V.
(2) Prove that W is equal to the subspace generated by W7 U W, U - -+ U W.
(3) For any i with 1 < i < k, prove

CHAPTER 3. BASIS AND DIMENSION

Wit Wot o+ W= Wi+ Wat o+ Wi)+ (Wi + Wot -+ W)

(1)

It is easily seen that W is a non-empty subset of V. Consider a,b € K and
T+ Tyt T, Yyt Yyt Y €W
with x;,y, € W, for every i = 1,2,... k. Then

a(@i+xy+ -+ xp) + (Y, +ys + -+ yp)
= (a1 +by,) + (a2@2 + bay,) + - + (axxk + bryy)

and a;x; + b;y; € W, for every ¢ = 1,2, ..., k. Hence the right hand side of the above
equality is the vector of W. Since W is a non-empty subset of V' and closed under
linear combination, W is a subspace of V.

Since for any z; € W; (i =1,2,...,k)
2, = 0+ +0+2,+0+---+0 € W,

we have W; C W for every i = 1,2,...,n.and slso Wy UWoU---UW, C W. Let W’
be a subspace of V' containing W7 U W, U --- U W,,. Because W’ is closed under vector
addition, we have

T+ -+ x| € W,

for any @, € Wi,y € Wy, ..., &, € Wy. This says that W C W’'. Therefore, W is
the smallest subspace of V' containing W7 U W5 U --- U Wy, that is, W is the subspace
generated by Wy U Wy U --- U W.

Letye Wi, +Wo+---4+W,and z € W, 1 + W9+ -+ + Wj. Because y and z can
be written such as

y:w1+w2+~--+a:i, z:wi+1+wi+2—|—--~+azk
for some x1 € Wi, k9 € Wy, ..., xr € Wy. Then
y+z =ax1t+x2t+--txp €W,

so that the RHS is included in W. Conversely, any € = o1 +x2+ - -+ x; € W is in
the RHS, because

T = (;1+xo+ - +x;) + (L1 + -+ xp)
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Exercise 3.7. For nonzero subspaces Wy, Wy of V| prove that the following state-
ments are equivalent.

(1) {Wy, W} is linearly independent,

(2) Any element @ in Wy + Ws is uniquely written as @ = @ + x5 with &; € W and
Ty € W27

(3) W, N Ws = {0},

(1) implies (2): We assume (1). Suppose that & € W, + W, satisfies
xT = ;1 +T2 = T+ T
for some x1, x| € W; and x5, &, € W5. Then
(1 — ) + (X2 —x),) = 0.

Since {Wy, W5} is independent, both terms on the left hand side or either of them
cannot be non-zero vector(s), that is. both must be the zero vector. Hence x; = ]
and xy = ).

(2) implies (3): Consider & € W; N W5. Then
z+0 = 0+x W+ W
Then, (2) derives = 0.
(3) implies (1): Let 0 # a; € Wi and 0 # x5 € W,. Suppose
axi + bxy = 0.

We will sow that a = b = 0. If not so, let a # 0 without of loss of generarity. Then

xr, = —x9 € Ws.
a

Hence x; = 0, and this is contradicton.
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Exercise 3.8. Prove the results stated just above.

Check the following:

1. Vector addition and scalor multiplication on V' x W defined above satisfy axioms of
linear space in Chapter 2.

2. Both V’ and W’ are closed under vector addition and scalor multiplication.

3. VVUW' generates V' x W.
4. {V', W'} is linearly independent.

1. (a)
(v, w1) + (Vo,wy) = (V1 + Vo, Wy + wy)
= (vg + v, wy + wy)

= (vg,wq) + (v, w1)

(v1,w1) + (V2,w2)) + (v3,w3) = (V1 + Vo, w1 + Wa) + (v3, w3)

= ((v1 4 v2) + v3, (w1 + ws) + w3)
('01 + (vy + v3), Wi + (we + ’lU3))

v, wq) + (Vg + v3, Wy + w3)

vy, wy) + (v, wa) + (v3, ws))

(
(

(U,w)+(0V,0w) = <U+0v,w+0W>
= ('v,'w)

(v,w) + (— (v, w)) = (v,w)+ (—v,—w)
= (v+ (-v),w+ (—v))
= (0V70W)

a((vi,wr) + (Va, ws)) = a(vy +v2, Wi + w>)
= a(vy+ vy, wi + ws)
= (a(vi+v2),a(w; + ws))
= (av; + avy, aw; + aws)
(avq, awy) + (avy, awy)

= a(vg, ws) +a (v, wy)
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(a+0b) (v,w) = ((a+b)v,(a+b) w)
= (av + bv, aw+bw)
= (av,aw) + (bv, bw)
= a('v w)+b(v w)

(g)

(ab) (v,w) = ((ab) v, (ab) w)
= (a (bv) ,a (bw))
= a(bv,bw)
= a(b(v,w))

(h)

l(v,w) = (lv,lw)

2. It is clear that V/ C V x W and (0y,0y ) € V'. Hence, V' is a nonempty subset of
V x W. For a,b € K and (v1,0p), (v, 0 ) € V'

a(vl,OW)+b(v2,0W) = (av1+b'02,0w) - V,.

Hence, V' is closed under the linear combination. Therefore, V' is a linear subspace of
V xW.

It is clear that W’ C V x W and (0y,0y ) € W’. Hence, W’ is a nonempty subset of
V x W. For a,b € K and (Ov,wl) , <Ov,’U)2) ew’

a(OV,w1)+b(OV,w1) = (Ov,aw1+b’U.72,) € w’.

Hence, W' is closed under the linear combination. Therefore, W’ is a linear subspace
of V. xW.

3. Since any (v, w) € V x W can be writted as
(v,w) = (v,0w) + (Ov, w),
and (v,0w), (0, w) € VUW' V'UW’ generates V x W.
4. Suppose v # 0y, w # Oy and
a(v,0w) +b(0y,w) = (0y,0).

Then, (av,bw) = (0y, 0y ) and we have a = b = 0. Thus, {V’, W’} is independent.
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In [2]:

Out[2]:

In [3]:

In [4]:

Out [4] :

In [5]:

Out [5] :

In [6]:

Out [6] :

In [7]:

OQut [7] :

In [8]:

In [9]:

Out [9] :

In [10]:
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Exercise 4.1. Observe what happens, if we replace A.tolist in In[4] with 1ist (A)
in the above dialog. Moreover, observe how the results change if we replace B =
A.copy() in In[5] with B = A.

A = array(A); A

array ([[1, 2, 3],
[4, 5, 611)

print (A)

[[1 2 3]
[4 5 6]]

L = 1list(A); L
larray ([1, 2, 3]), array([4, 5, 6]1)]

If an array A is converted to a list L by 1ist (A), L is a list, but the elements of L are arrays.

If you change B = A.copy() to B = A, A and B point to the same object in memory.

array ([[1, 2, 3],

[4, 5, 61]1)

A == B

array ([[ True, True, Truel,
[ True, True, Truell)

(A == B).all(Q)

True

B[O, 1] =1
If you change an element of B, the same element of A also changes.

(A == B).all()
True

A
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Out[10]:array([[1, 1, 3],
[4, 5, 611)

In [11]: B

Out[11]:array([[1, 1, 3],
[4, 5, 611)

It’s not just that A and B have the same content, but that A and B look at the same thing.



In [1]:
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Exercise 4.2. The following program outputs a calculation problem of matrices in
a form of a code in math mode of KTEX. Typesetting the obtained tex code, we will
have Figure4.1 Get another problem by changing the seed 2021 and solve it.

By changing the seed of the random number in Line 4, a different problem is generated.
By changing Line 9 of the program as follows, the KTEX formula with the answer will be
displayed.

Program: latexl.py

from numpy.random import seed, randint, choice

1

2 |from sympy import Matrix, latex
3

4 | seed(2021)

5 |m, n = randint (2, 4, 2)

6 | X = [-3, -2, -1, 1, 2, 3, 4, 5]
7 A = Matrix(choice(X, (m, n)))

B = Matrix(choice(X, (m, n)))
print (f'{latex(A)} + {latex(B)} = {latex(A+B)1}')

co

O

\left[\begin{matrix}-2 & -3 & 3\\4 & 4 & 2\end{matrix}\right] + \left[\
begin{matrix}5 & 4 & 1\\3 & 3 & 3\end{matrix}\right] = \left[\begin{
matrix}3 & 1 & 4\\7 & 7 & 5\end{matrix}\right]

Type setting this expressin of KTEX we have

~2 -3 3] [541) _[314
4 4 271|333 |77 5]
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Exercise 4.3. Let V =K" and W = K™, and let f : V. — W be a linear mapping
and A = [al a, --- an] be the representation matrix of f on the standard bases.
Prove the following statements.

1. f is surjective if and only if {a;, as,...,a,} generates W.
2. f is injective if and only if {a;, as, ..., a,} is linearly independent.

3. f is bijective if and only if {a;,as, ..., a,} is a basis of W.

Recall that for any v = (vy,v9,...,0,) €V

f(v) = Av = via; + vas + -+ + v,a,.

1.
f is surjective
< range (f)
& {f(v)!vGV}:W
& {Av|veVi=Ww
& {vla1+v2a2—|—--~+vnan V1,V ..., Up GK} =W
< {ay,as,...,a,} is linearly independent.
2.

f is injective

< kernel (f) = {0y}

& {v|fw) =0w}={0v}

& {v]|Av =0y} = {0y}

& (v, v2,...,0,) | 11 + v2az + -+ vaa, = 0y} = {(0,0,...,0)}
< via; +veas + - + v,a, = Oy implies vy = vy =+ =0, =0

< {ay,as,...,a,} is linearly independent.

3. It is the consequence of 1 and 2.
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Exercise 4.4. Generate 1000 vectors subject to the 2-dimensional standard normal
distribution and multiply them by the following matrix (1) or (2), and display the
vectors as points on a plane. Do a similar experiment using matrices (3) or (4) for
the 3-dimensional standard normal distribution.

1 2 3 1 2 3
1 2 1 2
MW |, 3 @ |, 3 |23 4 4 |2 31
3 4 5 3 1 2
Program: prob4_3_2d.py
In [1]: 1 | import matplotlib.pyplot as plt
2 |from numpy import array, random
3
4 A = array([[1, 2], [2, 3]11)
5 |B = array([[1, 2], [2, 411)
6 |P = random.normal (0, 1, (1000, 2))
7 1Q = array([A.dot(p) for p in P])
8 'R = array([B.dot(p) for p in P])
9 plt.axis("scaled"), plt.xlim(-2, 2), plt.ylim(-2, 2)
10 |plt.scatter(P[:, 0], P[:, 1], s=4, color='r')
Il |plt.scatter(Q[:, 0], Q[:, 1], s=4, color='g')
12 | plt.scatter(R[:, 0], R[:, 1], s=4, color='b')
13 | plt.show ()
2.0 ...'..
.:~..' °
“, %°°
1.5_ . ~.:'..:. ° .
P, v o0
° [ ]
1.0_ .; o °
0.5+ . q
’:.. LY : *
S o LY
0.0 - r:':-.-...,' s
~-"':l.' .'.
—05 T ‘:}.0;: ...:....
.l. ': o °
—-1.0 P
_1.5_ e & %%
_2.0 T 1 T T T T - T -
-20 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

The red dots represent 1000 vectors sampled from a 2-dimensional standard normal distri-
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bution. The green dots are the images of these 1000 red dots under the linear transformation
represented by matrix (1). The distribution of these dots shows a spread with an area. On
the other hand, the blue dots are the images of the 1000 red dots under the linear transfor-
mation represented by matrix (2), and these dots are distributed along a single line. If the
number of samples is increased or the variance of the normal distribution is increased, both
the red and green dots will spread over a wider range. However, the blue dots will never
spread outside the line.

Program: prob4_3_3d.py

from vpython import *
from numpy import array, random

= array([[1, 2, 31, [2, 3, 4], [3, 4, 511)

= array([[1, 2, 3], [2, 3, 1], [3, 1, 211)

=B

= random.normal (0, 1, (1000, 3))

= array([A.dot(p) for p in P])

= array ([B.dot(p) for p in P])

points(pos=[vector (*p) for p in P], radius=3, color=color.red)
points (pos=[vector (¥xq) for q in Q], radius=3, color=color.green)
points (pos=[vector (*xr) for r in R], radius=3, color=color.blue)

D O U< W

The red dots represent 1000 vectors sampled from a 3-dimensional standard normal distri-
bution. The green dots are the images of these 1000 red dots under the linear transformation
represented by matrix (3). These dots are distributed along a single plane. On the other
hand, the blue dots are the images of the 1000 red dots under the linear transformation
represented by matrix (2), and the distribution of these dots shows a spread with a volume.
If the number of samples is increased or the variance of the normal distribution is increased,



64 CHAPTER 4. MATRICES

both the red and blue dots will spread over a wider range. in the space. However, the green
dots will never spread outside the plane.



W respectively.

Exercise 4.5. Let V be the linear space consisting of all polynomials in = of degree
at most 4 and W be the linear space consisting of all polynomials of degree at most
2

2. Find the matrix representation of the second order differentiation

linear mapping from V to W, on the bases {1, z, 2 23 2*} and {1,x,2?} of V and

% which is a

65

Let {2 2% 23 2%, 2,1} be a basis of V and {z® 22 2,1} a basis of W. Since the linear
2

mapping e transform each element of the basis of V' such as

2+ 202° 4+ 02% + 0z + 0
zt = 02+ 1222 4+ 02 40
3 = 02 +02* + 62 +0
2 = 02 + 02 + 0z + 2
r +— 0x®+ 02?4+ 0z +0
1+ 02°+ 02+ 02 +0,

the matrix representation of this linear mappimg

20 0 0 0 0O
0 12 0 0 0 O
0O 0 6 0 00
0 0 0 2 00
Indeed, the formula
2
@ (0{,335 + CL4SL’4 + a3x3 + CLQI2 + a1 + CL()) = 20@51’3 + 12&4332 + 6@337 + 2@2
is represented by
.
20 0 0 0 0 0Of |ay 20as
0 12 0 0 0 O [az| _ [12a4
0O 0 6 0 0 0| |az| | 6as
0O 0 0 2 0 0| &g 2a4
_ao_

is

Here, the polynomials are expressed in order of descending powers, but if they are of ascending
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powers, the matrix representation will change as follows. From

0+ 0z + 02? + 02°
r + 0+ 0x+ 02”4 02°
22— 240z + 0z 4 023
2 — 0+ 6z + 0x® + 023
= 0+ 0x + 1227 + 023
z° = 04 0z + 0z* + 2022,
the representation matrix is
0020 0 O
0006 0 O0
0 00 012 0
0000 0 20
Then,
d?
) (ao + a1z + asx® + asx® + agxt + a5x5) = 2ay + 6asx + 124,42 + 20a52°
i
is represented by )
CLO—
0020 0 O ay 2as
0006 0 O as| | 6as
00 0012 O as|  |12a4
00 0 0 0 20| |ag 20as
_a5_
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Exercise 4.6. Find the representation matrix of each of the following linear map-
pings on the standard bases.

1. Linear mapping (z,y) — (z +y,z,y) from K? to K3,
2. Linear mapping (z,y, z) — (x +y,y + 2,z + 2) from K3 to K3.

3. Linear mapping (z,v,2) — (z +y,y + z) from K3 to K2

o) = [} = olo] 1]
o= o) = ol ol

we have the matrix representation [(1) 0] :

1. From

—_

(@]
[

2. From
1] [1] 1] [0] 0]
0 — (1| =1(0]+1]|1{+0{0
0] 0] 10 1)
o] [1] 1] [0] 0]
| Of = 1(0]+0(1{+1]0
- |1 u 10 1)
11
we have the matrix representation |1 0].
0 1
3. From

1 B ]

0f +— ! =1 L +0 0

0 1

_O_ B N -

o B ]

1 1 0

1] = | = 1 0 +1 1

_O_ B N -

o N ]

0 1 0

(1) =y = 0 0| +1 1

we have the matrix representation [(1) } ﬂ



In [1]:
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Exercise 4.7. Select two, allowing duplicates, from the next matrices, and compute
the product of them if it is definable.
} . B - [ 123

] 12 123
., C=134|, D=1]456
4506 5 6 789

The following program is a slightly modified version of the program problems.py on
page 110 of this book. SymPy is used instead of NumPy for matrix calculations. If an error
occurs when the matrix product cannot be defined, we will continue the program execution
by exception handling.

Program: problems2.py
from sympy import *

Matrix ([[1,
Matrix ([[1,
Matrix ([[1,
Matrix ([[1,

2 5
2,
2]3
2,

(3,
31,

[3,
31,

411)

(4, 5, 611)
4], [5, 611)
(4, 5, 61, [7,

DD O = W N =
O QW=
nn nn

8, 911)

o

print (r'\begin{eqnarrayx*}')

for X in ('A', 'B', 'C', 'D'):

10 for Y in ('A', 'B', 'C', 'D'):
11 try:

12

O

U, V = eval(X), eval(Y)

13 XY = r'\boldsymbol{%s%s}' % (X,Y)

14 print (fr'{XY}&=&{latex (U)}{latex(V)}\ =\ {latex (U*V)}I\\')
15 except ShapeError:

16 continue

17 print(r'\end{eqnarray*}"')

Lines 11.-.16: Line 14 raises an error named ShapeError if the matrix product of UV is
not defined. If this error occurs, execute the exception handling on line 16 and continue the
for loop on lines 11-16. If no error occurs, execute the print function on line 14.

This program will output the product of two combinations that allow duplication of the
given matrices and the solution in KTEX format. Typesetting it gives the following result.

1 2][1 2 710
Ad = [3 4] [3 4] B [15 22]

1 2]t 23 9 12 15
S R R

12
12 3 22 28
302{456}221 :{4964]



1 2 3
1 2 3 30 36 42
BD = { } 4 5 6| = { }
4 5 6 [7 3 9 66 81 96
1 2 1 9 7 10
CA = |3 4 {3 4} = |15 22
5 6 23 34
1 2 9 12 15
CB = |3 4 Lll g 2} = (19 26 33
5 6 29 40 51
1 2 3|1 2 22 28
DC = |4 5 6| |3 4| = |49 o4
78 9| |5 6 76 100
12 31|11 2 3 30 36 42
DD = [4 5 6| |4 5 6 = |66 81 96
78 9] |7 8 9 102 126 150

69
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Exercise 4.8. Typeset the IXTEX code output by Program latex2.py to obtain 5
calculation problems (Figure 4.4). Solve the problems.

By modifying the program as follows, the correct answer will be output at the same time,
when the value of the variable ans is True.

Program: latex2.py
In [1]: from numpy.random import seed, choice
from sympy import Matrix, latex

1

2

3

4 | seed (2021)

5 'ans = False
template = r'''
\begin{enumerate}

8 \item $%s%s = %s$
9 \item $%s%s = %s$
10 [ \item $%s%s = %s$
IT |\item $%s%s = ¥%s$
12 |\item $%s%s = ¥%s$

13 |\end{enumerate}
ll [ |

16 |matrices= ()

17 |for no in range(5):

18 m, el, n = choice([2, 3], 3)

19 X [-3, -2, -1, 1, 2, 3, 4, 5]

20 A Matrix (choice (X, (m, el)))

21 B Matrix (choice (X, (el, n)))

22 matrices += (latex(A), latex(B), latex(A*B) if ans else '')
23 | print (template % matrices)

1—334}2‘;_33_'522—2}

4 2 5], 1| 32 30 26

5 (3 5| [-2 2 3] [-11 1 —6

-2 4/ |-1 -1 =3] | 0 -8 —18
-3 -1 474 -1 4 —-25 12 0

3.1 2 3 5 3 4| =1]8 14 24
-3 3 2] [-2 3 4 7 6 -8
(2 3 11 7

4. 11 1 {:; _51] =|—2 -6
-2 -1 5 =9




5 |

1
-2

-2
—2

4
-1

|

QU = Ot

23
—17

3
—11

—17
—10

|

71
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Exercise 4.9. For the following matrices, see if they are regular matrices by checking
the linear independence of their column vectors.

1 2 3 1 2 3
1 2 1 2
mli] @i @l w2

It is possible to construct simultaneous equations according to the definition and check
whether the solutions are unique or not, but it is relatively easy to see whether or not they
are linearly independent by the following considerations.

(1) Since the scalar multiple of B] is never [g] , the column vectors are linearly indepen-

dent and the matrix is a regular matrix.

(2) Since 2 B} = [Z] , the column vectors are linearly dependent and this matrix is not a

regular matrix.

2 1 1 2 1 3
(3) Since |3| — [2| = |1| and then [3| + [1]| = |4/, the column vectors are linearly
4 3 1 4 1 5)

dependent and the matrix is not a regular matrix.

(4) The first and second columns are linearly independent. Check if the 3rd column can
be represented by a linear combination of the 1st and 2nd columns. Putting

3 1 2
1] = a |2 +0]|3],
2 3 1
we get
a+2 = 3 (1)
2a+3b = 1 e (2)
3a4+b = 2 - (3).

7
(1) x2—(2) derives b =5, and (1) x 3 —(3) does b = £ 80 the simaltaneous equations

has no solution. Therefore, the three column vectors are linearly independent and the
matrix is regular.
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Exercise 4.10. Is it possible to make BA = I hold for the same A and B as above ?

In [1]: 1 |from sympy import Matrix, solve, eye
2 |from sympy.abc import a, b, c, d, e, f
3
4 |A = Matrix([[1, 2, 3], [2, 3, 4]1]1)
5 B = Matrix([[a, bl, [c, dl, [e, £11)
6 |ans = solve(A*B - eye(2), [a, b, c, d, e, f])
7 print (ans)
= {a: e - 3, ¢c: 2 - 2%¥e, b: £ + 2, d: -2xf - 1}

Solve the equation BA = I for a,b,c,d, e, f.

In [2]: solve(B * A - eye(3), [a, b, ¢, d, e, f])

Out[2]: []
[1 means no solution. Try to actually calculate B A.

In [3]: B * A

Out[3]: Matrix ([
[a + 2xb, 2*xa + 3*b, 3*a + 4%*b],
[c + 2xd, 2*xc + 3%d, 3*c + 4xd],
[e + 2xf, 2xe + 3%f, 3*xe + 4xf]])

For BA =1,
a+2b 2a+3b 3a+ 4b 100
c+2d 2c+3d 3c+4d| = [0 1 0
e+2f 2e+3f 3e+4f 0 01

must hold. There do not exist a and b which simultaneously satisfy a +2b =1, 2a +3b =0
and 3a + 4b = 0 by comparing the first row of the matrices on both sides. Therefore, BA
never becomes the identity matrix.
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Exercise 4.11. For regular matrices A and B prove the following.
(1) (Ap)_1 = (A_l)p holds for a nonnegative integer p.

(2) Define A" o (AP)™" for positive integer p. Then, the exponent law AP AY =
APT holds for any integers p and q.

(3) If A and B are similar, so are A” and BP? for any integer p.

(1) Since
P P
(A)A» = A'A'... AAA A
pj\l p—1
— A'Al...ATA'AAA. A
p—1 p—1

™ N ——
= A 'TA1...ATAA.-.- A
= A'A
= I,

by the uniqueness of the matrix inverse we have (AP)™" = (A7

The proof by mathematical induction is as follows. When p = 0, I"* = I, so the
equality holds. Suppose that the equality holds when p = k. Then

(AM) 7 = (Al = (A TAT = (aT) AT = (AT
Thus the equality hold when p = k + 1.
(2) When both p and ¢ are non-negative integers, A? A? = AP*? hold. Then
APAY — (Ap)*l (Aqyl _ (Aqu)*l _ (Aq+p)*1 — A@t» — AP0
holds. When p = ¢,
APATT = APTIAT (AT = AP1 = APTC9),

When p < g,
APA-T — AP (A—l)q _ AP (A—1)p (A—l)qu _ (A—l)q*P — AP — pArt(=a)
When p 2 ¢,
APAT — (A—l)pAq _ (Afl)p—q (Afl)qu _ (Afl)l’—q — A9 — pA-pta
When p < ¢,

A PAI — (A—l)pApA—p+q — APta

From the above, the exponential law holds for any combination of signs of p and gq.
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(3) If A and B are similar, there exists a regular matrix V such that A = V!BV Then,

since ) .

Al = (V'BV) = vB (V)

A~! and B! are similar too. When p = 0,1, A? and BP are clearly similar. Let p be
an integer greater than 1. Then, since

= VBV,

p

Y

A? = (V'BV) = V'BV.V'BV.... .V !BV = VBV,

AP and BP are similar. Thus, A = (A?)"' and B™" = (BP)"" are also similar.
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Exercise 4.12. Prove equalities 1 -3 above.

Here, we give a proof of the equality (AB)* = B*A*. Let

11 Aiz2 - Aim b1 by - bln

Q21 A2z - Q2m bai by -+ Doy
A= 1. . , B = |

apn a2 o A bml bm2 e bmn

Then the (7, j)-th component of the product matrix AB is Z a;kby;. The (i, j)-th component

k=1
m
of (AB)" is E @;kbr;. On the other hand, since

k=1
@ @ b1 ain G1 vt apn
bia bay -+ Do o1 G2 -+ Qg2

* *

B - . ] A - )

bln an te bmn A1m  A2m - Aim

the (i, 7)-th component of the product matrix B*A* is Z b_;ﬂ@ Hence we have the equality.
k=1
The remaining equalities of 1 and 2 are left to the reader. Next, we prove the socond equality

of 3. If A is a regular matrix, by 3 we have
I =TI = (A7A) = A" (A7)

and also
I =TI = (AA™") = (A7) A~

By the uniqueness of the inverse matrix, the inverse of A* is (Afl)*, so we have the second
equality in 3. The first one is similarly seen.
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g(n)  hn)
Fm) ™y

that the former is a linear function and the latter is a constant function. Is that true?
If necessary, try to calculate up to n = 3000.

, and observe them. It is expected

Exercise 4.13. Draw the graphs of

Program: prob4_11.py

| |from numpy.random import normal
2 |from numpy.linalg import inv

3 |import matplotlib.pyplot as plt
4 |from time import time

-

N = range (100, 2100, 100)
7T = [0, [0, [1]

9 |for n in N:
10 t0 = time ()
11 A = normal(0, 1, (n, n))

12 t1l = time ()

13 A.dot (A)

14 t2 = time ()

15 inv (A)

16 t3 = time ()

7 print(n, end=', ')

._
oC

3 t = (t0, t1, t2, t3)

19 for i in range(3):

20 T[i].append(t[i + 1] - t[il)

2

22 |T1 = [t1/t0 for tO, tl1 in zip(T[0],T[1])]

23 |T2 = [t2/t1 for t1, t2 in zip(T[1],T[2])]

24 | plt.plot(N, T1)

25 | plt.plot (N, T2)

26 | plt.text(N[-1], T1i[-1], 'g(x)/f(x)', fontsize=18)
27 |plt.text (N[-1], T2[-1], 'h(x)/g(x)', fontsize=18)
28

29 | plt.show()

This program is rewritten from line 22 onwards of mat_product5.py on pages 124 and
125 of this book.

Note that the function time defined in the library time on line 4 (used in lines 10, 12, 14,
and 16) measures time with a precision higher than 1 second depending on the system. It’s
not always possible, so fractions on lines 22 and 23, for example, can cause divide-by-zero
errors. In such cases, try the function perf counter, which is defined in the same library
time, instead of the function time.



78 CHAPTER 4. MATRICES

251 A{X) ;s gx)/f(x)
] 501
20 g X)
251
154
201
10 4 15
104
iy
)
ol f(x) . h{x)/g(x)
250 560 7_';0 1OIOO 12150 15100 17150 20100 2_%0 560 7.';0 10'00 12'50 15'00 17'50 20'00

The left is the experimental result of mat_product5.py, and the right is the experimental
result of the above program. Both are done with Raspberry Pi 4 (1.5GHz, Cortex-A72)

1.2 h X)
3.0
1.0
2.5
081 % xg/f(x)
2.0 x)/9(x)
0.6 g X)
1.51
0.4
f( K) 1.0
0.2 1
0.5 A
0.0 4
6 560 IObO 15‘00 20‘00 25‘00 30‘00 [I) S(I)O 10‘00 15‘00 20‘00 25‘00 30‘00

The left is the experimental result of mat_product5.py, and the right is the experimental
result of the above program (using perf_counter). Both were measured in increments of 100
up to n = 3000 with iMac4 (3.2GHz intel Core i5). Mac and Windows have faster processing
speed than Raspberry Pi, but the OS also performs other processing in the background, so
the graph on the left shows its effect.
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Elementary Operations and Matrix
Invariants

Exercise 5.1 | Sect. 5.1. p.96 Inverse of ementary matrices

Exercise 5.2 | Sect. 5.1. p.96 Elementary matrices and operations™
Exercise 5.3 | Sect. 5.2. p.102 Properties of the rank of matrices
Exercise 5.4 | Sect. 5.2. p.102 Generating problems for ranks*
Exercise 5.5 | Sect. 5.3. p.104 Computing signatures of permutations®
Exercise 5.6 | Sect. 5.3. pp.104,105 | Determnants of 2- or 3 x 3-matrix*
Exercise 5.7 | Sect. 5.3. p.111 Regular matrices in randomly genarated matrices™
Exercise 5.8 | Sect. 5.3. p.111 Generating problems for detarminants™
Exercise 5.9 | Sect. 5.4. p.113 Properties of the trace

Exercise 5.10 | Sect. 5.5. p.117 Generating problems of linear systems™*
Exercise 5.11 | Sect. 5.6. p.120 Generating problems of inverse matices
Exercise 5.12 | Sect. 5.6. p.120 Culculation time of inverse matrices™
Exercise 5.13 | Sect. 5.6. p.120 Cofactor matrices

Exercise 5.14 | Sect. 5.6. p.121 Cramer’s formula™*

* Using Python
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KRR e Re R N e Re R S e e R s Re e e e Xel

Exercise 5.1. Confirm the above results by calculating the products Eg” ©) Eg” ’_C),

EYVEY?) and EYOEYY.

1 0 0 0 1 0 0 0
0 1 c 0 O 1 —c 0
: =1
0 0 1 0 0 0 1 0
K 0 0 1] Lo 0 0 1
1 0 0 -~ 01" 1 0 0 0]
0 1 0 0 0 1 0 0
0 c 1 0 ) o —c 1 0
|0 0 0 1] K 0 0 1]

The inverse matrix of B\ is E{""~° and also det <E§” ’C)> =1.

Eg’j)Egi’j) =TI and Egi’c)Egi’l/c) = I are similarly shown.

1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 ) 0 1 0 0
| O 0 0 i_ | 0 0 0 I |

The inverse matrix of Eg” ) is itself and also det (Eg” )) = —1.



[ 1 0 o017t 1

0 c 0 0
i =

LR IR I

The inverse matrix of EY is B and also det <E§i’c)>

81
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Exercise 5.2. Check what happens in R? if we apply elementary matrices as linear
mappings to vector (z,y). Also, check how matrix [ (CI g ] changes if we multiply it

by elementary matrices from the left or right.

B

o] et

Vol [7] - [¥]

-]

o llv] - o]
tHIER

1 « - a «a-+b

01| | ¢ ac+d
B a b
| aa+c ab+d
_|at+ab b
| ec+ad d

o] = 0]
)



In [1]:

The following is a program that outputs the calculation of this question in KTEX format.

Program: elementary_latex.py

1 from sympy import *
2

from sympy.abc import a, b, c, d,
‘1 E11 = Matrix([[1, alphal, [0, 111)
5 |E12 = Matrix([[1, 0], [alpha, 1]1)
6 E2 = Matrix([[0, 1], [1, 011)
7 |E31 = Matrix([[alpha, 0], [0, 111)
8 |E32 = Matrix([[1, 0], [0, alphall)
9
10 v = Matrix([[x], [yll)
11 |A = Matrix([[a, b], [c, d]])

3 |print (r'\begin{eqnarray*}')

|4 | print (f'{latex(E11) }{latex(v) }&=&{latex (E11*xv) }\\\\"')
15 |print (f'{latex(E12)}{latex (v) }&=&{latex (E12*v) }\\\\ ')
16 | print (f'{latex(E2)}{latex (v)}&=&{latex (E2*v) }\\\\"')
print (f'{latex(E31)}{latex(v) }&=&{latex (E31*v) }\\\\')
print (f'{latex(E32)}{latex(v) }&=&{latex (E32*v)}"')

17

18

19 | print (r'\end{eqnarray*}')
20

21 | print ()

22

23 | print (r'\begin{eqnarrayx}')
24

25

26

27

28

2

o O

LW

W W W W C
=~ W N

print (r'\end{eqnarrayx}')

X, y, alpha

print (f'{latex(E11)}{latex (A) }&=&{latex (E11*A) }\\\\"')
print (f'{latex(A)}{latex(E11) }&=&{latex (A*E11) }\\\\')
print (f'{latex (E12) }{latex (A) }&=&{latex (E12%A) }\\\\ ')
print (f'{latex(A)}{latex(E12) }&=&{latex (A*xE12) }\\\\ ')
print (f'{latex(E2)}{latex (A) }&=&{latex (E2*A) }\\\\")
print (f'{latex (A)}{latex (E2) }&=&{latex (A*E2) }\\\\ ")
print (f'{latex (E31)}{latex (A) }&=&{latex (E31*A) }\\\\"')
print (f'{latex(A)}{latex (E31) }&=&{latex (A*E31) }\\\\')
print (f'{latex(E32) }{latex (A) }&=&{latex (E32xA) }\\\\"')
print (f'{latex(A)}{latex (E32) }&=&{1latex (A*E32)}"')

83

The expression of the output formula may appear different. For example, x + ay may be
output as ay + x. The appearance of the matrix also differs depending on whether the array

environment is used or the matrix environment is used.

]
|

ol

:
;
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I Of |z |z
0 af |ly| |ay
1 aflla b  |a+ac ad+D
0 1| |c d| c d
a bl |1 af |a aa+Db
c d| |0 1|  |e ac+d
1 Ofla b] _ a b
a 1| lc d|l  |aa+c ab+d

a b1 0]  [a+ab b
c d| |la 1|  |lad+c d



Exercise 5.3. Prove the following facts about the rank of a matrix.

85

(1) rank (A) < min {m, n} for m x n matrix A.

(2) rank (AB) < min {rank (A),rank (B)} for | x m matrix A and for m x n
matrix B.

Because rank (A) is the dimension of range (A) and range (A) C K™, the inequality
rank (A) < m is clear. On the other hand, range (A) is generated by all column vectors
of A. If necessary, we can get a basis for range (A) by removing the appropriate column
vectors. Therefore, rank (A) < n is shown. The latter half can be also shown using
the dimension theoem as follows: A is a linear mapping from K" to K™. Let k be the
dimension of kernel (A). The the dimension theorem says that

n = rank (A) + k.
hence, we have n = rank (A).
Let the shape of A be (I,m) and the one of B be (m,n). Since
range (AB) = {ABz |z € K"} = {Ay|y crange(B)} C range(A),

we have rank (AB) < rank (A). On the other hand, let {yy,¥y,,...,y,} be a basis
of range (B), then, {Ay,, Ay,,..., Ay, } generates range (AB) (it’s not necessarily
linearly independent). Because k = rank (B), we get rank (AB) < rank (B).
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Exercise 5.4. The following program produces calculation problems of matrix rank.
Find the rank of each matrix generated by this program.

The following program is a modification of the program prob_rank.py in this book. It
outputs the questions in KTEX format and also outputs the answers.

Program: prob_rank?2.py
In [1]: from numpy.random import seed, choice, permutation
from sympy import Matrix, latex

def £f(P, ml, m2, n):
if n > min(ml, m2):
return Matrix(choice(P, (m1, m2)))
8 else:
9 while True:
10 X, Y = choice(P, (ml1, n)), choice(P, (n, m2))
11 A = Matrix(X.dot(Y))

12 if A.rank() == n:
13 return A
14

16 lm1, m2 = 3, 4

17 | seed (2020)

18 |ans = []

9 |print(r'\begin{enumeratel}')

20 |for i in permutation (max(ml, m2)):
A= f([-3, -2, -1, 1, 2, 3], ml, m2, i + 1)
print (rf'\item ${latex(A)}$"')
ans .append (A.rank ())

print (r'\end{enumeratel}')

print (f'Answer: {ans}')

) =

DD DN DN DN
Ul W N~

Problems:

4 5 -5 4
1. |8 1 =17 16
0 -3 =3 0
[—10 4 -8 -8
2.1 7 -2 8 4
| 0 -1 -3 2
2 2 -2 1
3. |-1 -3 —2 -2
-1 -1 -2 -3




3 -1 =3 -1
4. 19 -3 -9 =3
-3 1 3 1

Answer: [3, 2, 3, 1]

87

Below is an example calculated by hand. Other elementary transformation procedures

are possible.

1.

(Line 2 — Line 1 x 2)

(Line 3 x 3)

(Line 3 — Line 2)

Thus, the rank is 3.
2.

(Line 1 +2) — (Line 2 x 5)

(Row 24+ Row 1 x 7)

(Row 3 x 4 + Row 2)

Thus, the rank is 2.

4 5 -5 4
8 1 —17 16
0 -3 =3 0
(4 5 —5 4]
0 -9 -7 8
0 -3 =3 0]
(4 5 —5 4]
0 -9 —7 8
0 -9 -9 0]
(4 5 —5 4]
0 -9 —7 8
0 0 -2 0]

10 4 -8 -8
7 -2 8 4
0 -1 -3 2

[—5 2 —4 —4
35 —10 40 20
0 —-1 -3 2

-5 2 -4 -4
0 4 12 -8
0O -1 -3 2

-5 2 —4 -4
0 4 12 -8
0 0 0 O
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3. ] _
-2 2 -2 1
-1 -3 -2 -2
-1 -1 -2 -3

(Row 2 x2—Row 1) — (Row 3 x 2 — Row 1)

(Row 3 x2) — (Row 3 — Row 2)

Thus, the rank is 3.

4.
3 -1 -3 -1
9 -3 -9 -3
-3 1 3 1

(Row 2 —Row 1 x 3) — (Row 3 —Row 1)

3 -1 -3 -1
0O 0 0 0
0O 0 0 0

Thus, the rank is 1.



In [1]:

In [2]:

Out [2] :

In [3]:

Out [3]:

Exercise 5.5. Enumerate all permutations of orders 2 and 3, and calculate their
signatures.

39

Here is a program that finds all permutations of order n and their signs.

Program: permutation.py

def perms(seq):

1

2 if len(seq) <= 1:

3 yield seq, 1

1 else:

5 for p, s in perms(seq[1:]):

6 a = seql0]

7 for i in range(len(p) + 1):

8 yield pl[:il + [al + pl[i:], s * (-1)**i

This program utilizes the mechanism of generators in Python. The permutations of order 2

and their signs are:

for p, s in perms([1, 2]):
print(p, s)

(1, 21 1
[2, 11 -1

The permutations of order 3 and their signs are:

for p, s in perms([1, 2, 3]):
print (p, s)

[1, 2, 3] 1
[2, 1, 3] -1
[2, 3, 11 1
[1, 3, 21 -1
[3, 1, 21 1
[3, 2, 1] -1
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Exercise 5.6. Prove the following formulas for the determinants of matrices of orders
2 and 3.

(1) ot g asia
= (11022 — Q21022.

Q21 Q22

a1; aiz2 i3

(2) Q21 Q22 Q23 =

31 Aaz2 G33

11022033 + (12023031 + A13021032
— (11A23032 — A12A21033 — A1302203] -

The reader should try both calculation according to the definition of determinats and
calculation using elementary transformations.

Next is a program that uses SymPy to calculate the determinant in accordance with the
definition and to compare it to the result computed by the det method of the Matrix class.

Program: determinant.py

1 | def perms(seq):

2 if len(seq) <= 1:

3 yield seq, 1

| else:

5 for p, s in perms(seq[1:]):

6 a = seql[0]

7 for i in range(len(p) + 1):

8 yield p[:i] + [al + pl[i:], s * (-1)**i
9

10 |if __name__ in '__main__"':
11 from sympy import *
12
13 A = [[S('al1'), S('al12'), S('al3'), S('ald')],
14 [s('a21'), S('a22'), S('a23'), s('a24')],
15 [S('a31'), S('a32'), S('a33'), S('a34")],
16 [S('a41'), S('a42'), S('a43'), S('ad4d')]]
17
18 for N in[2, 3, 4]:

19 P = perms(list(range(N)))
20 D=0
21 for p, s in P:
2 term = s
23 for i in range(N):
24 term *= A[i][p[il]
25 D += term
26 print (D)
27
28 B = Matrix(A)[:N, :N]
29 print(B.det() - D)




all*xa22*xa33 - all*xa23*a32

all*a22 - al2x*xa2l

0
a22*a31

0

all*a22*a33*a44
*a24*xa32*a43
*a23*xa3lxadd
*a21*xa32*xadd
*a24*a3dl*ad?2
*a22*a31%*a4d3

all*xa22*xa34*xad3 -

all*a24*a33*xad?2
al2*a23*a34*xadl
al3*a2l*a34*xad?2
al3*xa24*xa32*xadl
ald4d*a22*xa33*xadl

all*a23*a32*ad4d
al2*a21*a33*ad4
al2*a24*xa31*xad3
al3*a22*a31*xad4d
aldxa21*xa32*xa4d3
ald4*a23*xa31*ad?2

- al2*xa21*xa33 + al2*a23*a3l

+ + + + + t

+ al3*a2l1*%a32 -

all*a23*xa34*ad?2
al2*a21*a34x*a43
al2*a24*a33*a4l
al3*a22*a34x*adl
al4d*xa21*xa33*ad?2
ald*a23*a32*a4dl

al3x*

alil
al2
al3
al3
ald
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Exercise 5.7. Write a program that randomly creates 10000 square matrices of
order n whose elements are integers between 0 and 10. Count the number of regular
matrices for several n.

Below is a program that performs 10 experiments with n changed from 1 to 10.

Program: random_matrix.py

I | from numpy.random import seed, randint
2 |from numpy.linalg import matrix_rank

3

4 |def f(n):

) S =0

6 for i in range (10000) :

7 A = randint (0, 10, (a, n))

8 if matrix_rank(A) < n:

9 S += 1

10 return S

11

12 | seed (2021)

13 |for m in range (10):

14 print ([f(n) for n in range(l, 11)])

Lines 8, 9: Whether or not a square matrix of order n is regular is determined by whether
the rank is equal to n.

\begin{verbatim}

(1005, 577, 206, 51, 4, 0, 0, 0, O, O]
[1044, 536, 228, 41, 11, 1, 0, 0, O, O]
[957, 582, 211, 54, 12, 0, 1, 0, 0O, O]
[960, 545, 190, 50, 5, 1, 0, O, 0, O]
[1t052, 567, 194, 50, 10, 1, O, O, O, O]
[963, 543, 190, 48, 8, 3, 0, 0, 0, O]
[984, 587, 204, 43, 17, 2, 1, 0, 0, 0]
(1010, 557, 210, 62, 9, 2, 0, 0, 0, O]
[1t022, 556, 217, 59, 9, 0, 0, 0, 0, O]
[985, 542, 214, 45, 15, 1, 0, O, O, O]

Each line lists the number of occurrences of singular matrices from n = 1 to n = 10. There
are 10 lines because we ran the experiment 10 times. It can be seen that the occurrences of
singular matrices are reduced as n increases.
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Exercise 5.8. The following program generates two matrices. Calculate the deter-
minant of generated matrices by hand using elementary operations.

The following program is a modified version of prob_det.py that prints out the questions
in IXTEX format and also these answers.

Program: prob_det2.py

I | from numpy.random import seed, choice, permutation
2 |from sympy import Matrix, latex

def £f(P, m, p):

5 while True:

6 A = Matrix(choice(P, (m, m)))
7 if p ==

8 if A.det() == 0:
9 return A

10 elif A.det() !'= 0:
11 return A

12

13 |lm = 3

14 | seed (2020)

15 lans = []

16 |print (f'Problem: ")

17 |print (r'\begin{enumeratel}')

18 |for p in permutation(2):

19 A= £([-3, -2, -1, 1, 2, 3], m, p)

20 prob = rf'\item ${latex(A)}$'.replace('[', '|').replace(']"', 'I")
21 print (prob)

22 ans.append (A.det ())

23 | print (r'\end{enumeratel}')

24 |print (f' Answer{ans}')

Problem:

\begin{enumerate}

\item $\left|\begin{matrix}-3 & 1 & 1\\1 & 3 & 1\\-3 & 3 & -3\end{matrix}\
right|$

\item $\left|\begin{matrix}-2 & 1 & -1\\-3 & 2 & 3\\3 & -2 & -3\end{matrix
\right|$

\end{enumerate}

Answer [48, 0]

Line 20: Replace both [ and ] in the IXTEX string latex(A) with | to display the matrix
as the determinant.

Problem:
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-3 1 1
1.]1 3 1
~3 3 -3
-2 1 -1
2.1-3 2 3
3 =2 =3
Answer: [48, 0]
1.
-3 1 1 1 3 1
1 3 1] = —-|1-31 1 (Swap Row 1 and Row 2)
-3 3 =3 -3 3 =3
1 3 1
= —|0 10 4 (Row 2 + Row 1 x 3)
0 12 0 (Row 3+ Row 1 x 3)
11 3
= (0 4 10 (Swap Row 2 and Row 3)
0 0 12
= 1x4x12 = 48
2.
-2 1 -1 -2 1 -1
-3 2 3 = (-3 2 3
3 -2 -3 0 0 0 (Row 2 + Row 2)
=0 (If a row is all Os, its determinant value is 0)

Typeset output for m=4

Problem:

-3 1 1 1

1 3 1 -3 3
-3 -3 -3 -1

-2 1 1 -1

-3 -2 -3 2

2 1 1 =2

2. 2 1 -1 =2

1 2 -3 2

Answer: [-88, 0]
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Before solving this problem, we introduce one formula that simplifies the calculation of
the determinant. This formula is also a special case of a formula called cofactor expansion

(see answer to question 5.11).

a1 Xx
0 a929
0 | as
0 QAn2

an3

*
a Q22 Q23 - d2p
2
" azz2 Q33 - A3
@3n | = ay

Qp2 QAp3 -+ App
a’nn

The horizontal line below the first row on the left side and the vertical line on the right side
of the first column are inserted to make the formulas easier to see. The number of parts of
x can be anything. This is not difficult to derive from the definition of determinant.

1.

-3 1 1 1
3 1 -3 3
-3 -3 -3 -1
-2 1 1 -1

1 -3 1 1
1 3 -3 3
-3 3 _3 _1 (Swap Row 1 and Row 2)
1 -2 1 -1
1 -3 1 1
06 -4 2 (Row 2 — Row 1)
0 —-12 0 2 (Row 3 + Row 1 x 3)
0 1 0 -2 (Row 3 — Row 1)
6 -4 2
—1x1[=-12 0 2
1 0 =2
1 0 =2
=12 0 2 (Swap Row 1 and Row 3)
6 —4 2
1 0 -2
0 0 -22 (Row 24 Row 1 x 12)
0 -4 14 (Row 3 — Row 1 x 6)

—1x (—4) x (—22) = —88
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-3
1
-1
-3

2
-2
-2

2

1

1
0
0
0

4 x (

2 1 1 =2
2 1 -1 =2

2 -3 2
(Swap Row 1 and Row 4)

3 =2 =3 2
2 -3 2
-3 7 —6 (Row 2 — Row 1 x 2)
-3 5 —6 (Row 3 — Row 1 x 2)
4 —-12 8 (Row 2 + Row 1 x 3)
-3 7 —6
—-1x|-3 5 -6
4 =12 8
-3 7 —6
—4x|-3 5 -6
1 -3 2 (Row 3 = 4)
1 -3 2
-3 5 —6 (Swap Row 1 and Row 3)
-3 7 —6
1 -3 2
0 -4 0
0 -2 0
1 -3 2
—4)x(=2)x|0 1 0 (Row 2 + (—4))
0 1 0 (Row 3 = (—4))

0

(If there are the same two rows, the determinant value is 0)



Exercise 5.9. There are some small gaps and omissions in the arguments in this
section. In the first part we say “are immediate from”, “a simple calculation” and
“using this fact repeatedly”, which contain some gaps. In the second half, we omit
the proof of existence of X. Fill these gaps one by one.
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Y

e “The equalities 1 to 3 are immediate from the definition.”: Let

A —

1. Since A+ B =

2. Since cA =

3. Since A* =

a1 a2 A1n bi1 b2 b1y,
ag1  A22 Aon B ba1  ba bay,
anp1  Ap2 Ann bnl bn2 b’rm
ap; + b1 aiz + bio a1y, + b2
ag1 + ba1  agy + by Aoy + by |
) , it follows that
(07951 + bnl an2 + an Ann + bnn

n

=1 i=1

i=1

ca11 Caig Clin

ca1 C “2n | it follows that

CQp1  CQpo Clpp,
n n

LHS = ZC(J,M = cZaii = RHS

i=1 i=1

ap; Qg Qn1

2z “21 it follows that

Q1n  Q2p Qnn,

i=1 i=1

« “A simple calculation leads to Tr (AE) = Tr(EA).”: When E = Egi’j’c), since both
AFE and EA have the same ordering of the diagonal components as A, we have
Tr(AE)=Tr(EA)=Tr(A).
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When E = Eg” ), since the ordering of the diagonal components of AE and EA are
just the (7,7) component and the (7, 7) component of the diagonal component of A that
are exchanged respectively, we have Tr (AE) = Tr (EA) = Tr (A).

When E = E:(;’C), since the ordering of the diagonal components of AE and EA
are just c-times of the (7,7) component of the diagonal component of A, we have
Tr(AE) =Tr(EA) =Tr(A).

“ using this fact repeatedly, we get Tr (AB) = Tr(BA).”: First, if B is a diagonal
matrix, since

a11b11  ajobay - alnbnn ai1byn  anbyy - a1nbl1
agibin  agbi - agbuy agibaa  ageby -+ agyba
anlbll an2622 e annbnn anlbnn anann e annbnn

note that Tr (AB) = Tr (BA) = Z a;b;;. B can be represented by

i=1
B = BB, - By,
where each of By, Bs, ..., B}, is either a elementary matrix or a diagonal matrix. Hence

Tr (BkABlBQ cee Bk—l)
= Tr (kalBkABlBQ"'Bk,Q)

— Tr(B\Bs---ByA)
= Tr(BA)

is derived.
“to prove our assertion, it is enough to show that ¢ (U;;) = «ad;; for some constant

a € K”: Since
A = Zzai]’Uz’ja

i=1 j=1

if the above condition holds,

v(A) = ZZaijgp(Uij) = Z%W(Uii) = aZaii = aTr(A)

i=1 j=1

is derived.
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“Since U;; = U;;U,; and U;;U;; = O, “’: Multiplying a matrix by U ;; from the right
sets all other elements of the matrix to 0 except for the jth column. Therefore, when
U ;; is multiplied from the right, jth column remains as it is, so U;; does not change as
it is . On the other hand, multiplying a matrix by U ;; from the left will set all other
elements to 0 except for the jth row of the matrix. Therefore, if U;; is multiplied from
the left, the jth row (all components of this row are 0) remains unchanged, and all
other components are 0, so it becomes O.

“Since U;; = Eg’j)Uijg’j) and Egi’j)Eg’j) = I,” Multiplying a matrix from the left
by Eé” ) swaps the 7th and jth rows of the matrix, and multiplying from the left The
1th column and the jth column are exchanged. Therefore, by multiplying from both
sides of U j;, the (7,7) component and the (7, j) component are only exchanged. On the

other hand, Eg” )Eg’j ) = T was already checked in question 5.1.

The last paragraph: For

e(Un) ¢Uzn) -+ ¢Un)
X _ o (Uz) ¢(Us) © (Unz2)
oUn) o (Us) - o (Unm)

we have ¢ (A) = Tr (AX), because

Tr(AX) = ZZaijgo(U,-j) = @(ZZ%;’U@) = p(A).

i=1 j=1



In [1]:
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Exercise 5.10. The following program randomly generates a problem of linear
system with unknown variables x,y, z. By changing the parameters, it generates a
problem with or without solution, or with a unique or infinitely many solutions. It
prints out the created problem in BTEX math mode code. It also output the solution.
Solve the output problem by hand.

The program Prob_eqn.py given in this book outputs expressions using matrices and
vecors, but has been improved to the following program which outputs problems and answers
in the form of simultaneous equations.

Program: prob_eqn2.py

| |from numpy.random import seed, choice, shuffle
2 |from sympy import Matrix, latex, solve, zeros

3 |from sympy.abc import x, y, z

4

5 | template = r''Problem:'

6 $\left\{

7 \begin{array}t{cccccccccct

8 %hs&x&+&s&y&+&)s&z&=&%s\\

9 | %hs&x&+&s&y&+&)hs&z&=&%s\\

10 | %s&x&+&)s&y&+&1s&z&=&"%s\\

11 | \end{array}

12 '\right.$\qquad'"''
13
14 |def £f(P, m, n):
15 while True:

16 A0 = choice(P, (3, 4))

17 A = Matrix (AO)
18 if A[:, :3].rank() == m and A.rank() == n:
19 break
20 A, b = A[:, :3], A[:, 3]
21 u = Matrix([[x], [yl, [zl1)
22 problem = template 7 tuple(AO.flatten())
23 print (problem)
24 answer = solve(A * u - b, [x, y, z])
25 if answer == []:
26 print ('Answer: no solution')
27 else:
28 print (r'Answer: $\left\{\begin{arrayl}t{cccl}')
29 print (rf'x&=&{latex (answer [x]) }\\')
30 print (rf'x&=&{latex (answer [y]) }\\"')
Sl if z in answer:
32 print (rf'z&=&{latex(answer [z]) }\\')
33 else:

34 print(r'z&:&\text{arbitrary constant}\\')
35 print (r'\end{array}\right.$"')

36 print ()




In [1]:

46

49

seed (2020)
print (r'\begin{enumeratel}"')
print(r'\item ')
m, n =3, 3
f(range (2, 10), m, n)
print (r'\item ')
m, n =2, 2
f(range(2, 10), m, n)
print (r'\item ')
m, n = 2, 3
f(range (2, 10), m, n)
print (r'\end{enumerate}"')
2z + 2y 4+ 5 2z =8
1. Problem: 5z + 5y + 7 2z =5
92 4+ 2y + 7 2z = 2
7T + 8y + 8 z =3
2. Problem: 5 ¢ + 8 y + 6 =z 5)
8  + 8y + 9 2z = 2
3z + 4y + 4 2z =38
3. Problem: 2z + 3y + 3 2z =26
> + 9 vy + 9 = 5
How to solve problem 1:
x oy z‘
2 2 5] 8
10 10 14|10 (Row 2 x 2)
18 4 14| 4 (Row 3 x 2)
x Y z
2 2 5) 8
0 0 —11]-30 (Row 2 — Row 1 x 5)
0 —14 —-31|-68 (Row3—Row1x9)
x Y z
2 2 ) 8
0 —14 —31 | —68 (Swap Row 2 and 3)
0 0 —11|-30

101

Tl
Answer: r o= —3
30
< = 1
r = —z—1
Answer: r = g -z
z arbitrary constant

Answer: no solution
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2 x + 2y + 5 z =
- 4y - 31 z =
—11 2z =

8
—68
30

30
By (3) we get z = T Substituting this to (2) we have

30
My —31x 2 =
Y 11
154y — 930 —

154y =

Substituting the to (1) we get

13 30
20+ 2 % (——)+5X—

11 11
22x — 26 + 150
22z

Answer¢ y = —

How to solve problem 2:

—1]1  (Row 1 — Row 3)

oo

oo 00 O co 00 O
Nej
]

-1 —-1] 1
0 1[{10 (Row 2—Row 1 x5)
0 1[10 (Row 3 —Row 1 x 8)
Ty oz

-1 0 -1 1
0 8 1]10
00 0| 0 (Row3—Row?2)

=
Qo=

—68
—748

182
13

11

88

—36
18

11

—_
co

Qo—
O

—
=
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— — z = 1 (1)
8y + 2= 10 (2
0 2z = 0 -+ (3)

)
By (3), z is an arbitrary constant. Substituting this to(2), we get y = 1 % Substituting

this to (1), we haver = —1 — 2.

€T = —]_ —Z

_ 5 _z

Answer ¢ ¥y 15
z . arbitrary constant

How to solve problem 3:

T Yy z
3 4 48
2 3 3|6
59 95
r Yy z
1 1 1[2 (Row1— Row 2)
2 3 3|6
59 9|5
T Yy z
11 1] 2
01 1] 2 (Row2—Rowlx2)
0 4 4/-5 (Row3—Row 1 x5)
r Yy z
11 1] 2
01 1] 2
0 0 0]-13 (Row 3 — Row 2)
T 4+ oy +  z= 2 (1)
y + oz = 2 (2
0 2 = —13 -+ (3)

(3) will never hold, so there is no solution in these simultaneous equations.
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Exercise 5.11. Generate matrices using program prob_det.py in Exercise 6.8 and
calculate their inverse matrices by the sweeping method.

-3 1 1
1 1 3 1
_—3 3 -3
[ -3 1 1]1 0 0]
1 3 110 1 0

_—3 3 =3/0 0 1_

[ 1 3 1/0 1 0]

-3 1 1|1 00 (Swap rows 1 and 2)
_—3 -310 0 1_

1 3 1]/0 1 0

0 10 4|1 3 0O (Row 2 + Row 1 x 3)
_0 12 010 3 1 (Row 3+ Row 1 x 3)
1 3 1|0 10

0 1 2|5 & 0 (Row 2+ 10)

_0 12 0] 0 3 1

1 0 —% —% é 0 (Rowl—RowaB)
R S

B 3

oloEl gy ) o
(1 0 0] -1 % —% (R0W1+Row3><é)
0 1 11 _5
B 4 38 24

= O

Therefore the inverse matrix is

Q0 |k [ =00 =
R N

-2 1 -1
2. 1-3 2 3
3 -2 =3
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2 1 —1|1 00
-3 2 3010
3 -2 =3|0 0 1
[ 1 -1 —4|1 -1 0 (Row 1 — Row 2)
-3 2 3/0 10
0 0 00 11 (Row 2+ Row 1)

0 -1 -9[3 -2 0 (Row 2 + Row 1 x 3)

1 -1 -4 1 -1 0
1 9/-3 20 (Row 2 x —1)
o o0 o0 0 11

(Row 1+ Row 2)

There is no inverse matrix because the sweeping method cannot be continued anymore.
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Exercise 5.12. Write a program using NumPy to calculate the inverse of a matrix of
any order by the sweeping method. Compare its calculation time with the of function
inv provided in NumPy for randomly generated matrices of large order.

Program: sweep.py

In [1]: 1 |from numpy import *
2 |from time import time
3 |import matplotlib.pyplot as plt
4
5 |def inv(A):
6 m = len(A)
7 C = concatenate((A, eye(m)), axis=1)
8 for i in range(m):
9 cli, :1 /= C[i, i]
10 for k in range(m):
11 if k !'= 1i:
12 Clk, :1] -= Cc[k, i] = C[i, :]
13 return C[:, m:]
14
15 |X = array(range (10, 510, 10))
16 1Y = []
I7 |for n in X:
18 A = random.normal (0, 1, (n, n))
19 t0 = time ()
20 inv (A)
21 #linalg. inv (4)
22 tl = time()
23 Y.append (t1 - tO0)
24 print(n, t1 - tO0)
25
26 |S = linalg.pinv(array ([X**0, X**1, X**2, X**3]))
27 |T = S.transpose ()
28 |c = T.dot(Y)
29 | print(c)
30
31 | plt.plot(X, Y)
32 |plt.plot (X, c[0] + c[1]1*X + c[2]*X**2 + c[3]*xX**3)
33 |plt.show()

Line 2: For the function texttt time, see the answer of Question 4.11.

Lines 5—13: A function to calculate the inverse matrix by the sweeping method.

Line 21: Comment out the 20th line and remove the comment out of this line, which allows
you to measure the calculation time using the function that calculates the inverse matrix in
Numpy’s module 1inalg.

Lines 26 —28: The calculation time of the inverse matrix of the square matrix order n is of
the n3th order. Using the generalized reverse matrix described in Chapter 10, the coefficient
of a cubic function that approximates the graph is calculated.



Line 29: Displllay coeficients of 1, z, 22, 2 respectively.

404

301

201

104

/
/
/
/

3.01

2.51

2.04

1.51

1.0 A

0.5 1

0.0

—

/

/
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200 400

600

800

1000

T
200

T
400

T
600

T
800

The left is calculated using inv. The approximate function is as follows.

T
1000

y = —1.15176487 x 10" + 7.41374215 x 102 + 2.17633872 x 10722 + 2.20985648 x 10~ 52°.

The right is a calculation using Numpy’s linalg.inv. More than 10 times faster than
above. The approximate function is as follows.

y = 3.17283176 x 1072 — 4.19975415 x 10~z + 1.34962027 x 10~ 2% + 2.27055604 x 10~ %z°.

Both are Raspberry Pi 4.

By the way, if you use the formula of the reverse matrix ( texttt inv.Py) using cofactor
matrices at the end of the chapter, it will take 10 seconds or more in the 100th regular
matrix as follows. This is quite slow compared to the above. inv.py uses the numpy function
linalg.det for the calculation of matrices.

10 A

,,—7//

S

20

40

60

80

100

y = 2.07779648 x 10~' — 3.17384809 x 10~z + 1.57720787 x 10~32% — 2.88631266 x 102> +
2.72963110 x 10~ 7z* — 2.82740676 x 101125
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Exercise 5.13. Prove the equalities above for the cofactor matrix.

First, we show the following formula which is called the cofactor expansion of determinant.

|A| = a1;A1 + ag;Dgj + -+ - + ay; Ay (j=1,2,...,n)
= aﬂAﬂ +ai2Ai2+"'+amAm (’L = 1,2,...,”)

We show the first equation for j = 1, which is called the cofactor expansion of Column 1; to
show

|A| = a1 +anloy + -+ ann A - (D).
By a property of determinant, we have
11 aiz -+ Aip
Q21 Q22 *-° A2p
An1 Gp2 " Gpp
aix Q2 -+ Qip 0 aip -+ aiy 0 a2 -+ a
0 azxp - azy Q21 Q22 --° Q2 0 agp -+ a
O Ap2  **+ Qpp O Ap2 - App Ap1 Ap2 - Qpp
1 a2 -+ an 0 a2 -+ aip 0 a2 -+ aip
0 agx - az L axp - a 0 asg --- az,
= an|. . . B e o T LT an .
O Ap2 -+ Qpp 0 Ap2 -+ Qpp 1 Ap2 -+ Qpp

By repeatedly exchanging rows (or columns), it can be deformed as follows.

apn aig - 0 - agy L ap - a1 0 i
agr azg -+ 0 - oag, 0 an - aj1 -+ an
1 = ()™, Aij
Ay Qi v HRR ¢ 77 Qi—11 - Gi—145-1  Gi—1n
anl an2 ... O DR ann O anl DEEEY 0 DY ann

This shows (1) when j = 1. The proof in which 7 = 2,... n (the cofactor expansion of the
jth column)
|A| = alelj + CLQjAQj + - F CLnjAnj

can be shown similarly. The second equality which is called the cofactor expansion with
respect to rows is due to the one with respect to columns, because the value of determinant
is invariant under transposition.
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Next, we showA A" = |A| I for

A11 A21 T Anl
A, d:ef A12 A22 e AnQ
Aln AQTL e A’rm

The (4, j)th component of AA’ is
aitAj1 + aipljo + - + @i jn.

When i = j, it is the cofactor expansion of |A| with respect to rows and equals |A|. When
t # 7, let B be the matrix obtained from A by replacing the j row by the ¢ row. Then
the determinant of B is 0 because two different rows are equal. Hence by considering the
cofactor expansion of B with respect to the jth row, we have

aﬂAjl + CLQA]’Q + -+ (lmAjn = 0.

Thus AA’ = |A| I is proved.
If the linear equation Ax = b has a solution, then & = A~ 'b and we have

A'b
r = —:.
|A|
Here, the ith row of the numerator A’b on the right side equals to the determinant of the
matrix A with the jth column replaced by b (consider the cofactor expansion at the jth
column of that matrix). This is called Cramer’s formula.
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Exercise 5.14. Give the formula for the solution of the system of equations Ax = b
with

a11 diz2 A3 X1 by
A= |an ap a3 |, = |22 |, b= by |,
a31 daz2 G33 €3 b3

where A is regular. That is, express explicitly the solutions for unknowns z, s, x3
in terms of coefficients a;; and b; (1 < 4,5 < 3).

NS, T SQJCRN O

Program: linearsystem.py

from sympy import *
from sympy.abc import x, y, z
var('all al2 al3 a21 a22 a23 a31 a32 a33 bl b2 b3')
ans = solve([all*x + al2*y + al3*z - bil,
a2l*x + a22*y + a23*z - b2,
a31*x + a32xy + a33*z - b3], [x, y, z])

print (r'\[\left\{\begin{array}t{ccc}')

print (rf'x&=&{latex (ans[x]) }\\[24pt]'.replace('frac', 'dfrac'))
print (rf'y&=&{latex(ans[y]) }\\[24pt]'.replace('frac', 'dfrac'))
print (rf'z&=&{latex(ans[z]) }\\'.replace('frac', 'dfrac'))
print (r'\end{array}\right.\]1"')
( r = a12023b3 — a12a33b2 — a13a22b3 + A13a3209 + a22a33b1 — az3a320;
(11022033 — 411023032 — Q12021033 + Q12023031 + Q13021432 — Q13022031
y = —ay1a23b3 + a11a33by + a13a21b3 — a13a3109 — asrazsby + azsaz by
(11022033 — 411023032 — Q12021033 + Q12023031 + Q13021432 — A13022031
- a11a22b3 — a11a3202 — a12a21b3 + a12a3102 + 213201 — axeaziby
\ (11022033 — 411023032 — 112021033 + Q12023031 + Q13021032 — A13022031

To obtain the above results by hand, expand the following Cramer’s formula:

by a2 ais a;; by as a; a2 b

by azp ags as by ags as; Gz b

b3 asy as3 asi bz ass asi asy b
Tr = ) Yy = ’ z =

a1 daiz2 A3 ail aiz Aais 11 a1z A3

21 Qg2 A3 a21 A2z A23 Q21 Q22 A3

a31 dasz2 G33 az1 asz 33 a3; aszz2 a3s3
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* Using Python
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Exercise 6.1. Prove that |- ||, and || - ||, satisfy Axioms N1-N3 of norm.

Let @ = (x1,22,...,2,) and y = (y1,¥2,...,Yn) be in K" and a € K.
[P
lzlly = [oo + |z + -+ za] 2 0

where the equality hold if and only if 21 =25 =--- =2, = 0.

lamll, = lazs| + |azs| + - -~ + |az,]
lal [z + laf |2s] + - + [a] 2]
[af (Jza] + ol 4+ + |zal)

= lal =],

lz+yll;, = e+l +lee+y2|+ -+ on + ynl
< (Jeal + fgl) + (ool + [gal) + -+ (l2a] + Jyal)
(sl + ol + -+ Jzal) + (Il + lyal + - + lyal)
— il + il
I Nl
]l & max{lz], [za] ... |2l } 2 0,
where the equality holds if and only if 1 =29 =--- =2, = 0.
laz|, = max{|azi|,|azs],. .., |az,|}
— max{Jalfaal, lal o] .. o] 7]}
|a| max{|z1|, |za], ..., |za] }
— ldl ...
lz+yll, = max{|zs +ul, |22+ w2l ., [0+ ynl }
< max{|z] + [l [za] + [yol -, [2a] + [yl
< max{la|, o] .o fal } A+ max{|yi], fyal - lyal}

= &l + Yl



Exercise 6.2. Show that the standard inner product satisfies Axioms of inner prod-
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uct.
1. positivity:
(x|z) = mez Z!xﬁ = 0,
i=1
where the equality holds if and only if x1 =29 =--- =2, = 0.
12. Hermitian property:

13.

14.

(ylo) = > Twi = > Ty = Y Ty = (x| y)
=1 =1 =1
homogeneity:
(x| ay) = ) Tay, = a) Ty = alz|y).
=1 =1

additivity or distributive low:

n

<:B|y+z> = ZQC_ZQ/H'%) = Z(m_zyzﬂLx_zzz)

i=1

= > Tty Tam = (z|y)+ (=] 2).
=1 =1
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Exercise 6.3. Prove the above properties.

I5. linearity:

(x| ay+bz) = (x|ay)+ (x|by) (by the additivity)
= a <az | y> + b<a3 ‘ y> (by the homogenuity).

I6. conjugate homogeneity:

<a:v | y> = <y | a:l:> by the Hermitian property)

= a(y|=x) (by the homogeneity)

(
(

= a(y ‘ x) (by a property of the complex conjugate)
(

= 6<a: ’ y> by the Hermitian property).
I7. additivity or distributive low:

<:c +y ! z> = <z | T + y> by the Hermitian property)

(

= (z|x)+(z|y) (by the additivity)
(
(

= (zlz)+(z]|y)
= (z|z)+(y]=)

I8. conjugate linearity:

by a property of the complex conjugate)
by the Hermitian property).

<a:1: + by | z> = <a:13 ‘ z> + <by ‘ z> (by the additivity)
= a(x ‘ z) +5<y ! z) (by the complex homogeneity).
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Exercise 6.4. Prove the identity
2
lz+yl* = [[=]* +2Re ((= | y)) + lyl*.
When K = R, it becomes

lz+yl* = llzl” +2(z | y) +llyl”

lz+y|* = (z+y|z+y)

= (z|z)+(z|y)+(y|z)+(y|y)
= (z|z)+(z|y)+(z|y)+(y|y)
= |zl +2Re ({z | y)) + ||y’

When K = R, note that <y | w> = <:c ‘ y>.
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Exercise 6.5. For x,y € V, prove that & = y if and only if <:13 ‘ z> = <y ‘ z> holds
for every z € V.

The if-part is trivial. We show the only-if-part Supose that <w | z> = <y | z> holds for
every z € V. Then for any z € V,

<a: -y | z> = 0.
must hold. Putting z =  — y, we have
<:1:—y ’ :c—y> = 0.

Hence x —y =0 and so x = y.
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Exercise 6.6. By rewriting the square of each norm by inner product, show the
formulas:

(1) The Pythagorean theorem:

2 2 2
zly = |z+yl” = |zl + lyl”,

(2) The parallelogram law:

le +yl* +llz —ylI* = 2)z|”+2]y]’,
(3) The polarization identity:
@ ly) = L (e ol eyl + il iyl iz i),
and when K = R,

(@|y) = (le+ gl - =~ yl).

(1) Suppose x_Ly. Since <:13 ‘ y> = <y } zc> =0,

le+yl* = (z+y|zty) = (z|z)+(x|y)+(y|z)+(y]y)
= (z]z)+(y|y) = llzI*+llyl*.

(2) Since
(trylz+y) = (|2)+ (@ |y +{y|z)+(y|y)
and
(—ylz-y) = (x|z)—(z|y)-(y[z)+{y|v),
adding both sides gives the desired equality.

(3) When K = R, since <:B ‘ y> = <y | :B>, we get the desired equality by subtractiing
both sides of the two equalities in the proof of (2). When K = C, those equalities are
rewritten as

(et+ylzty) = (@|z)+(x|y)+(z|y)+(y]y)
= (z|z)+2Re(z|y)+(y|y)

(x-ylz-y) = (z|z)—(z|y)—(z|y)+{y|y)
= (z|z)—2Re(z|y)+(y|y).

Side-by-side subtraction of these yields

lz+yl* — llz —ylI* = 4Re (z|y) (1)
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On the other hand, we also get

+i<w‘y>+§<y|w>+gz’<y’y>
+i(z|y) —i(z|y) —(y|y)
—2m(z |y) —(y|y)

— iz |y) —i(y|z)+ii(y | y)
—i(z|y)+iz|y)—(y|y)
+2Im (z | y) = (y | y)-

(x+iy|z+iy) = (z]|=
= <w‘:c
= <w‘:1:

<az—iy‘az—iy> = <a:’:c

= <w‘w

~ S S~ S S~ N~

= (z|=
Side-by-side subtraction of these yields
|z +iy|* = | — iyl = —4Im (z|y) - (2).

By (1) — ¢ x (2) the desired equality is shown.
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Exercise 6.7. On the standard inner product and the Euclidean norm in R?, prove

<m ‘ y> = ||m||2 ”yHQCOSWa

where w is the angle between vectors & and y in R2.

cosf) —sinf
sin @ cos

B cos —sinf] [z1]\" ([cosd —sind Y1
<U:1: ’ Uy> o ( {sin 0 coS 9] |:l’2:| ) < [Sin 0 cos 0] {ygl )

S “[cosd —sinf]" [cosf —sinh Y1

~ |xy| |sinf cosf@| |sind cosO| |ya

! "1 0 ul _ |1 " Yyl

= L BB - BB - et

Consider rotation matrix U by which the & and x axes overlap.

Let U = [ ],then

L

lyllpsinw' 1+ Ay~ yllycosw

€1

Then,  and y are transformed to the following vectors respectively.

ku] [nyu w}
Ux = 2|, Uy = 2"
[ 0 Y7 yllysinw
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Hence

(z|y) = (Uz|Uy) = ||, llyllycosw + 0|z, [[yll,sinw = [z, [yl cosw.
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Exercise 6.8. Show that the orthogonal projection projy : V. — V is a linear
mapping.

Let W be a subspace of V, {ej,es,...,e,} a orthonormalbasis of W and proj,, the
orthogonal projection onto W. Then projy, is expressed by

n

projy, (x) = Z (e;| x)e;.

i=1

for any @ € V. Since x — <ei | a:> is linear, so is @ — <e7; } :13> e; for every fori =1,2,... n.
Therefore & — projy, () is also linear, because the sum of linear mappings is linear.
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Exercise 6.9. Let a and b be real numbers with a? + > = 1 and consider the
subspace W = {[ Zi ] ’ T € R} of R? generated by e = [ Z } Prove that the

representation matrix of the linear mapping projy, on the standard basis of R? is
2
a ab}

: T _
given by ee" = [ab B2

Since {e} is an orthonomal basis of W, it follows that
. B - al [dx+aby ] | a* ab x
proiy (@) = (e [ aye = @oron) | § | = [Sotir ] = [o @[5 ]

X

for all z = [
Y

Jev.



123

Exercise 6.10. Show the inequality ||projy, ()| = ||| for any vector € V and
any finite dimensional subspace W C V.

By applying the Pythagorean theorem to the vectors & — projy, () and projy, () which
are orthogonal to each other, we have

. . 2
|z||> = |z — projy (z) + projy, (z)]|
. 2 . 2
= || — projy, (z)|” + [[projy ()|
. 2
2 |lprojy ()|
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Exercise 6.11. Use VPython to paste the image data created in Section 1 onto a
2D plane in 3D space without distortion (Figure 6.4).

The image data created in Chapter 1 is saved in a file as a list of coordinates of black
pixels when a photograph is binarized. Let’s project this onto a plane (screen) in the three-
dimensional space R3. To specify the plane of R?, we give one p € R3 and make the plane
orthogonal to it. Even if the screen is determined, the way to project the image vertically
and horizontally cannot be determined unless the orthonormal basis of the plane is given.
We obtain an orthonormal basis {eg, €1, €3} of R? from {p,x,y, 2} by the Gram-Schmidt
orthogonalization method. At this time, we get an orthonormal basis {e;, es} of the screen,
because ey has the same direction as p. We look at vector e; in the upward direction and
vector e, in the right direction. Plot a black dot at point x;e; + x2e5 of R? when the pixel
at point (z1,x9) is black in the image data. The image will be drawn on the screen without
distortion.

Program: mypict6.py

from vpython import *
from gram_schmidt import gram_schmidt

]
2
3
| |with open('mypictl.txt', 'r') as fd:

5 Data = eval(fd.read())

7 p=[1, 2, 3]

8 x, vy, z=1[1, 0, 0], [0, 1, O], [0, O, 1]
9 |[E = gram_schmidt ([p, %, y, z]l)

11 |vx, vy, vz, vp = vec(*x), vec(xy), vec(*z), vec (*p)
12 |e0, el, e2 = vec(*E[0]), vec(*E[1]), vec(*E[2])
13 | canvas (background=color.white, forward = -cross(el,e2), up = e2)

15 | for e in [vx, vy, vzl:
16 curve (pos=[-10*e, 10*e], color=e)
17 |arrow(axis=vp, color=color.yellow)

19 | curve (pos=[-10%*el, 10*el], color=color.magenta)
20 | curve (pos=[-10%e2, 10*e2], color=color.cyan)

for (x1, x2) in Data:
points (pos=[10*(xl1*el + x2%e2)], color=color.black, radius=2)

DN N DN
NS

Line 2: In order to use the Gram-Schmidt orthogonalization method, gram_schmit.py
created in this section is used as a library. Put it in the current folder in whch this program
is saved.

Lines 4, 5: Read the binary image data created in Chapter 1. It must be in the current
folder too. The data is a list of 2D coordinates, written as a literal of a list of tuples. After
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reading it as a string, evaluate it with the function eval as a list of tuples and refer the list
as Data.

Lines 7, 8: Represent the vectors p,,y, and z of R? as lists p, x, y and z in Python
respectively.

Line 9: Create an orthonormal system from {p, x,y, z} by the Gram-Schmidt orthogonal-
ization method. The reason why we orthogonalize using four vectors including up to z is
because it takes into consideration the case where p is along the x or y axis.

Lines 11,12: Cast «,y, z and eg, e1, es to vector’s in VPyton.

Line 13: Set the background color to white when drawing with VPython. We will look at
el to the right direction and e2 to the upwards. VPython’s function cross(el, e2) is the
cross product of el and e2.

Lines 15— 17:Draw the z, y, and z axes as line segments ranging from —10 to 10 respectively.
and the vector p as an arrow.

Lines 19,20: Draw coordinate axes containing ey, e; respectively.

Lines 22,23: Plot the black points of a binary image on the screen. However, the screen
itself is not drawn.
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Exercise 6.12. Prove the following assertions.

CHAPTER 6. INNER PRODUCT AND FOURIER EXPANSION

(1) f*is a linear mapping and does not depend on the choice of orthonormal basis

of V.

(2) Assume that W is also finite dimensional. If A is the representation matrix of
f on orthonormal bases of V' and W, then the representation matrix of f* on
the same bases is the adjoint matrix A* of A, and <A*y ‘ a:>1 = <y ‘ AZB>2
holds for any x € V and y € W.

Let denote f* by f° which is the adjoint linear mapping defined by the other or-
thonormal basis of V. Consider arbitrary but fixed * € V and y € W. Just like
showing <f* (y) { :13> = <y | f (:1:)>, we can see <f° (y) ‘ az> = <y f (az)> There-
fore, <f* (y) ‘ m> = <f° (y) | ac> holds. Since & € V is arbitrary, it follows that
f(y) = f°(y). Since y € W is also arbitrary, f*: W — V and f°: W — V are the

same.

Let A be an m X n matrix. Then
(y | Az) = y*"Az = y'A%z = (A'y)'z = (A'y|z)
for any x € K" and y € K™. It follows that the mapping f : @ — Az satisfies
(y|Az) = (y [ f(2) = (£ (v) | =),

and that (A*y | x) = {(f"(y) ! x). Because ¢ € K" is arbitrary, A*y = f* (y) for all
y € W. Therefore, the matrix representation of f*: W — V is no more than A*.
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Exercise 6.13. Prove that < | > above satisfies Axioms of inner product. Also
prove that each function defined by the following is a norm of C ([a, ], K):

i [ 1 @l
1/2

T (/ f (@ |da:) ,

def
1flle = 5333) (z)].

Assuming that the following facts are known as the basics of calculus: (1) A continuous
function defined on a finite close interval is integrable, that is, its definite integration is
determined as a finetevalue; (2) If the value of the continuous function is always non-negative
in the interval and the definite integration is 0, the function constantly takes value 0 on that
interval; (3) A continuous function defined on a finite close interval has the maximum and
the minimun on the interval.

| -|l;: The positivity is clear from the previous comment (1). The absolute homogeneity
follows

b b b
lesly = [ ler@lde = [lellf @lds = lel [ If @)lde = [e]f],

The triangular inequality (the sub-additivity) follows
b b
I+l = [ 1@ +s@lae £ [ (7@ o@D
b T ’
[ir@lass [Cg@lds = 5l + ol

| - |l,: It suffices to show that

b—
(flg) = / F @)y () de

satisfies the axioms of inner product. We remark that the definite integration of f: R — C

is defined by .
/f def/Ref( )dm—i—z’/lmf(x)dx

where i is the imaginary unit. Then, f / f (x) dz is a linear mapping from C' ([a, b], C)

/abf(x)dx _ /abf(x)dx.

to C. Also we have
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The positivity follows from

b b
(15 = / T (2)de = / o) dr

and the comment (2). The Hermite property follows as

ane / F@g (@) dz = /amgu)dx - / f@)a@ds = (9] f).

The homogeneity follows as

<f’cg> = /amcg(x)dx = c/a f(x)g(x)dr = c<f|g>.

The additivity follows as

(flg+h) = /m(g(aﬁ)—l—h(aj))da: = /(f(x)g(x)+f(x)h(a:))da:
= [ T@o@des [ F@n@ae = (7]a)+ (s |n).

| 1lo: The posotivity follows from that there exists 1 such that a < 21 S band 0 < |f (z)] £

|f (z1)] = || fll,, for any a = x = b. At this time, the absolute homogeneity follows as
leflloe = max fef (@)] = max || |f (z)] = |e[[f (@)] = lel[If]ls-

The triangular inequality (the sub-additivity) follows from that

£+l = max|f @) +9()| = max(|f @]+ (@)
= 1f @)l +lg @)l £ 1F @)l +1g @)l = 1+ gl

where x = x1 (resp., ro and x3) attains the maximum of |f (x)| (resp., |g ()| and |f (x)] +

lg (2)])-
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Exercise 6.14. (1) Consider the monomial functions fy, fi, fo € C ([0, 1], R) defined
by fo(x) 9 h (x) 2 and fy (x) © 2 forz € [0,1]. Find the inner products
<fm } fn> for m,n =0,1,2 and the norms || f,||;, || fally, | fullo for n=10,1,2.

(2) Consider the exponential functions e, () Lf g2mine ¢ ¢ ([0,1],C) for z € [0,1]
and n € Z, where ¢ is the imaginary unit. Find the inner products <em | en> for

m7n:O7:l:1,j:2,....

(1)

1
Ifoll, = / ldr — ) — 1-0 — 1
0

' 21 1 0 1
= d == —_— = —_—— - = =
[ f1lly /0 |z| dx {2} 35 >

#1101 00 1
hll, = [ o2de = H _Le!

1

1 xg 1 1 O 1
Il = / 2y — H o1
’ 0 31, 3 3 3
1 511
1 0 1
| f2l, /O(x) x [5]0 ‘/5 - -
[ folle = (glgcll =1
Ifille = %13§1|x| — 1
_ 2
[ folle = max o? = 1

(2) Note that

2 2 o
<em | en> — / eimz o o — / e IMT HINT o / ez(—ern)xdx.
0 0 0

When m = n,
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When m # n, putting k = —m +n # 0,

2m 2w
{em | €n) = / ekrdy = / (cos kx + isinkx) dz

2
= / cos kxdx + z/ sin kzde = [coskx]2™ + i [~ cosc]oT
0
= 1-1440—-0) = 0+0: = 0.
Note that the following calculation is also valid:

/27T - L ke o _ 1(27rik_ Oik) _ 1<1_1) -0
Oe x—,ke _ike e = = 0.

L5 0
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Exercise 6.15. Prove that F is an orthonormal system of C (]0,1],R), that is,
(e; | ej) =0y forall i,j =0,+1,42,. ...

We first show each e; is of norm one. When £ < 0,

11 — cos 2 (27kt)

1
lexlls = 2/ sin® (27kt) dt = 2/ dt
0 0 2

1 1
= / dt—/ cos (4rkt)dt = 1 -0 = 1.
0 0

When £ =1,

1
leolls = 2/ 12dt = 1.
0

When £k > 0,

1
lewll? = 2 [ cos® (2mkt) dt — 2/
0 0

| 2 27kt
+cos2(7r )dt

1 1
= / dt—l—/ cos (drkt)dt = 1+0 = 1.
0 0

Next, we show the orthogonality.
1
<ek ’ €0> = / V2sin (2rkt) - 1dt = 0,
0

for £ < 0, and
1
(e | o) = / V2cos (2mkt) - 1dt = 0.
0

for kK > 0. When k,l <0 and k # [,

(ex | &) = /01 V2sin (27kt) - V2 sin (2nlt) dt

= /008(27r(k—l)t)dt— lcos(Qw(k’—i—l)t)dt =0

0 0

When k,l > 0 and k # [,

(ep | &) = /01 V2 cos (2rkt) - V2 cos (2xlt) dt

- /cos(27r(k+l)t)dt+ 1cos(27r(k—l)t)dt = 0.

0 0
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where note that both k + [ and k — [ can not be 0. When k£ < 0 and [ > 0,

(ev | &) = /1 V2sin (27kt) - V/2 cos (2xlt) dt

= /1sin(27r(k—|—l)t)dt+/1sin(27r(k—l)t)dt =0

including the case of k + 1 = 0.
The following calculation that reduces the number of cases which must be considered.

Let (h>
wf [ 1 k=0
o (k) = {o if k<0
1
0{ T
and

k
sk (t) = sin (27r/<:t + %%r) k=0,+£1,£2,....

Note that ey = s¢ and that if & # 0, then V2si, = ey
! k l
<Sk ‘ sz> = / sin (27rk;t + #W) sin (27rkt + ?W) dt
0
1 [t k l
= —5/ cos (27r(k‘+l)t—i— MW) dt
0

2
—%/Olcos (27T(k—l)t+w7r) dt
— —%] (k1) + %J(kz,l) (we denote),

where cos x has period27 and the definite interation form 0 to 27 is 0.
1. Case k # [: Note that J (k, 1) = 0. Furthermore,

(a) Case k+ 1+ 0: Since I (k,1) =0, it follows that (s, | s;) = 0.
(b) Case k+ 1 =0: Since o (k) + o (I) = 1, it follows that

1
I (k1) = / cos— = 0,
0

{si | 1) = 0 holds.
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2. Case k =[: Note that
J(k,k) = cos0=1.
Furtermore,
1
(a) Case k # 0: Since I (k, k) = 0, it follows that ||s;||*> = (s ‘ Sk) = 5

(b) Case k = 0: Since
1(0,0) = cosm = —1,

it follows that ||so|” = (50| s0) =1.

Therefore, {sg, 541, 42, ...} is an orthogonal system and by normalizing it we get E.
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Exercise 6.16. In program brown.py, in order to use this program fourier.py
as a library and import this lowpass, comment out Line 3 and uncomment Line 4,
and execute the program. The modified brown.py will display a warning at Line 17
because f_K takes a complex value. If we use f_K.real instead of f_K at Line 17,
the warning will disappear. Display also f_K.imag at the same time.

Program: brown.py

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

1.0

0.54

0.0

-0.54

1.0

0.54

0.0 4

—0.5 -

1.0

0.54

0.0+

—0.5

from numpy import arange, cumsum,
from numpy.random import seed,
from trigonometric import lowpass
import matplotlib.pyplot as plt

sqrt
normal

seed (2021)

n = 1000

dt =1 / n

t = arange(0, 1, dt)

f = cumsum(normal (0, sqrt(dt), n))
fig, ax = plt.subplots(3, 3, figsize=(16, 8))
for k, K in enumerate([O, 1, 2, 4, 8, 16, 32, 64, 128]):
i, j = divmod(k, 3)
f_ K = lowpass(K, t, f)
ax[i] [j].plot(t, £), ax[il[j].plot(t, £_K)
ax[i] [j].text (0.1, min(f), £'K = {K}', fontsize = 20)
ax[i] [j].set_x1im (0, 1)
plt.show ()
1.0 1.0 m‘
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4l I f
"Wy ' M i LM\, i
Mﬂ W WMVMW%MANA. 0.5 ’/ W ﬂhmw “MAM\ 0s{ 4 ¥ vﬁﬁmw MMANM
r VAR MY Vv M& WA 'y W
X \\ K 0ol \ / 00f \ ’f
\ \\V \\V f
K=4 W] s k=8 W| s K=16 W
0.0 OTZ 0j4 OTS 0j8 1.0 0.0 OTZ 0.‘4 0i6 0.‘8 1.0 0.0 OTZ 0.‘4 0i6 O.‘S 1.0
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0.0 0t2 0j4 OtG 0z8 1.0 0.0 0t2 0.‘4 OtG 0.‘8 1.0 0.0
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Program: brown2.py
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1 | from numpy.random import seed, normal
2 |from fourier import lowpass
3 |import matplotlib.pyplot as plt
4
5 | seed (2021)
6
7 |/n = 1000
8ldt =1/ n
9 't = arange(0, 1, dt)
10 | £ = cumsum(normal (0, sqrt(dt), n))
11
12 | fig, ax = plt.subplots(3, 3, figsize=(16, 8))
13 |for k, K in enumerate([O0, 1, 2, 4, 8, 16, 32, 64, 128]):
14 i, j = divmod(k, 3)
15 f K = lowpass(K, t, f)
16 ax[i1[j].plot(t, £), ax[il[j]l.plot(t, f_K.real)
17 ax[i] [j].plot(t, f_K.imag)
18 ax[i] [j].text (0.1, min(f), £'K = {K}', fontsize = 20)
19 ax[i] [j].set_x1im (0, 1)
20 | plt.show ()
1.0 1.0 1.0
0.5 0.5 4 0.5 4
0.0 T+ 0.0 ¥ 0.0
05| K=0 \J s K=1 \J o5 K=2 V
0.0 0i2 0j4 0i6 0j8 1.0 0.0 0i2 0j4 0i6 OjS 1.0 0.0 0i2 O.‘4 0i6 0.‘8 1.0
1.0 1.0 1.0
0.5 0.5 1 05 1
0.0 7 0.0 1+ 0.0 1+
sl K=4 v sl K=8 sl K=16 \/
0.0 OiZ 0j4 Oi6 ofs 1.0 0.0 0i2 0f4 OiG ofs 1.0 0.0 0i2 O:4 OiG O:8 1.0
1.0 1.0 1.0
0.5 4 0.5 4 0.5 4
0.0 1+ 0.0 1+ 0.0 1+
0.0 OiZ 014 0i6 018 1.0 0.0 0i2 0i4 0i6 0.’8 1.0 0.0 0i2 0.’4 0i6 0.’8 1.0

The imaginary part of £ K is the constant function 0, i.e., £ K is a real valued function.
When the values of K in trigonometric.py and fourier.py are equal , the graphs of each
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f_K draw the same shape. Indeed, since
(e | f><c ek (1)
1
— / 672m'k5f (8) ds eQm'kt
0

= (/o cos (2mks) f (s) ds — i/o sin (27ks) f (s) ds) (cos (27kt) + isin (2mkt))
= /0 cos (2mks) f (s) ds cos (2mkt) —|—/0 sin (27wks) f (s) ds sin (27kt)

4 ( /O ' cos (2mks) f (s) dssin (2rkt) — /0 ' din (2nks) £ (s) ds cos (27rk;t)> ,
it follows that
(er | Feen ) +(er | f)er(t)
~ 9 /0 " cos (2ks) £ () ds cos (2kt) + 2 /0 i (2mks) £ (s) ds sin (2k)
= (e | e @)+ y | Fpe s ()

for £ > 0 and also
(eo | feeot) = (e | flpeo(t)-
Here, < } '><c is the inner product on the complex linear space C ([0, 1],C), and < | ~>R

is the one on the real linear space C'([0,1],R). On the other hand, {e;},-__ is the Fourier
series on C'([0,1],C) and {e} },-___ is the trigonometric series on C ([0, 1] ,R).
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Exercise 6.17. Draw the graphs of other polynomials and compare them with each
other.

(1) poly_npl.py (using the Gram-Schmidt orthogonalization method)

20 1
0.8
0.6
0.4 - 101
0.2 51
0.0 A 01
—0.21 -5
—0.41 “104
—0.6 _151
—0.8 A
T T T Y Y Y Y Y Y —20 1 v v v v v - - -
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Chebyshev polynomial of the first kind (left), Chebyshev polynomial of the first kind with weights (right)

0.8 1

0.6

0.21

-0.24

—-0.4

—0.6

—0.8

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Chebyshev polynomial of the 2nd kind (left), Chebyshev polynomial of the 2nd kind with weights (right)

poly_np2.py (using orthogonal polynomials defined in numpy.polynomial)



138 CHAPTER 6. INNER PRODUCT AND FOURIER EXPANSION

1.00 15
0.75 1
10+
0.50 1
5
0.25 1
0.00 A 0
~0.251 s
~0.50
_lo E
~0.751
~1.00 —151
-1.00 -0.75 —050 —025 0.00 025 050 075 1.00 -1.00 -0.75 -0.50 —-0.25 0.00 025 050 0.75 1.00

Chebyshev polynomial of the first kind (left), Chebyshev polynomial of the first kind with weights (right)

1.0

30 A
204 0.8
10 A / 0.6 -

0-
0.4 1

~10
0.2 1

—20+
304 0.0
—40 4 —0.2 1

0 2 4 6 8 10 0 2 4 6 8 10

Laguerre polynomial (left), Laguerre polynomial weighted (right)

(2) poly_np2.py (using orthogonal polynomials defined in numpy.polynomial)

4000
30 -
3000 A
20 A
2000 A
10 A
) \(\
0 0
—1000 - —10 1
~2000 -
_20 4
-3000 -
_30 4
_4000 1 T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Hermite polynomial (left), Hermite polynomial weighted (right)

Orthogonal polynomials are also defined in SciPy’s Special functions module (scipy.special).
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Exercise 6.18. Experiment with the other polynomials than Legendre’s. Compare
the results by NumPy and by SymPy.
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Program: poly_spl.py (using the Gram-Schmidt orthogonalization method)

| | from sympy import x*
2 |from sympy.abc import x

3
I D = A

5 'Ledendre': ((x, -1, 1), 1),

6 'Chebyshevl': ((x, -1, 1), 1 / sqrt(l - x**2)),
7 'Chebyshev2': ((x, -1, 1), sqrt(l - x*x*2)),

8 'Laguerre': ((x, 0, oo), exp(-x)),

9 'Hermite': ((x, -oo, 00), exp(-x**2)),
10 |}

11 |dom, weight = D['Chebyshev2']

N

def inner (f1, f2):
f = f1 *x £2 *x weight
return integrate(f.expand(), dom)

—
ot

16

17 |def norm(f):

18 return sqrt(inner(f, £))

19

20 |def gram_schmidt (A):

21 E = []

22 while A !'= []:

23 a = A.pop(0)

24 b = a - sum([inner(e, a) * e for e in E])
25 E.append (b / norm(b))

26 return E

27

28 |E = gram_schmidt ([1, x, x**2, x*x%3])
29 | for n, e in enumerate(E):

(%]

print (f'e{n}(x) = {e}")

Lines 13—15: If you directly write an expression that contains a fraction in the integrand

or the integral area, the fraction will be converted to a real number in the calculation.

>>> integrate(x**2 -1/4, (x, -1/2, 1/2))
-0.166666666666667

In this case, if you pass it as a character string, it will calculate it as a fraction.

>>> integrate('x**2 - 1/4', (x, '-1/2', '1/2'))
-1/6

This is the same as the following.
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>>> integrate(x**2 - Rational(l, 4), (x, -Rational(1l, 2), Rational(l, 2)))
-1/6

Program: By using poly_sp2.py (with sympy.polys.orthopolys)
In [1]: 1 |from sympy.polys.orthopolys import (
) legendre_poly,
3 chebyshevt_poly,
1 chebyshevu_poly,
5 laguerre_poly,
6 hermite_poly,
70)
8 |from sympy.abc import x
9 |from sympy import Lambda
10 | import matplotlib.pyplot as plt
11 | import numpy as np

13 |x1 = np.linspace(-1, 1, 1001)
14 1 x2 = x1[1:-1]

15 |x3 = np.linspace(0, 10, 1001)
16 |x4 = np.linspace(-3, 3, 1001)

18 |Poly = {
19 'Legendre': (legendre_poly, x1, 1),

20 'Chebyshevl': (chebyshevt_poly, x2, 1),

21 'Chebyshev2': (chebyshevu_poly, x2, np.sqrt(l - x2*x2)),
22 'Laguerre': (laguerre_poly, x3, np.exp(-x3)),
23 'Hermite': (hermite_poly, x4, np.exp(-x4**2))
24 |}

25

26 | poly = Poly['Hermite']

27 e = poly[0]

28 |dom = poly[1]

29 |weight = poly[2]

30 |for n in range(6):

31 print (f'e{n}(x) = {e(n, x)}")

32 f = np.vectorize(Lambda(x, e(n, x)))

3

plt.plot(dom, f(dom) * weight)

=~ W

LW W
ot

plt.show ()

o Lagrange polynomials

— Results of poly_spl.py:

e0(x) = 1/sqrt(pi)

el(x) = sqrt(2)*x/sqrt(pi)

e2(x) = 2*sqrt(2)*(x**2 - 1/2)/sqrt(pi)
e3(x) = 4*sqrt(2)*(xx*3 - 3*x/4)/sqrt(pi)

— Results of poly_sp2.py:
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e0(x) =1

el(x) = x

e2(x) = 3*xxxx2/2 - 1/2

e3(x) = Bxx*x3/2 - 3*x/2

ed(x) = 3bxx**x4/8 — 15xx*x2/4 + 3/8
e5(x) = 63*x**5/8 - 35*x**x3/4 + 15*x/8

1.00 -

0.75 4

0.50 4

0.25 4

0.00 4

—0.251

—0.50 1

—0.75 A

—1.00 4

—1100 —0175 —0"50 —0‘.25 0.60 0.‘25 0‘150 0"75 1‘60
o Chebyshev polynomials of the first kind

— Results of poly_spl.py:

e0(x) = 1/sqrt(pi)

el(x) = sqrt(2)*x/sqrt(pi)

e2(x) = 2*sqrt(2)*(x*x*2 - 1/2)/sqrt(pi)
e3(x) = 4x*sqrt(2)*(x*x*3 - 3%x/4)/sqrt(pi)

— Results of poly_sp2.py:

e0(x) =1

el(x) = x

e2(x) = 2kx**2 — 1

e3(x) = 4*xx*x*3 — 3%x

ed(x) = 8*x*k*kd — 8xx*xx2 + 1
e5(x) = 16*x*x5 — 20*x**3 + b*x

1.00 A

0.75 4

0.50 4

0.25 4

0.00 4

—0.251

—0.50 1

—0.75 A

—1.00 4

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
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o Chebyshev polynomials of the second kind

— Results of poly_spl.py:

e0(x) = sqrt(2)/sqrt(pi)

el(x) = 2*sqrt(2)*x/sqrt(pi)

e2(x) = 4*sqrt(2)*(x**2 - 1/4)/sqrt(pi)
e3(x) = 8*sqrt(2)*(x**3 - x/2)/sqrt(pi)

— Results of poly_sp2.py (The graph is multiplied by a weight function.):

e0(x) =1

el(x) = 2%x

e2(x) = 4xxxx2 - 1

e3(x) = 8*xx**3 - 4xx

ed(x) = 16xx**x4 — 12xx*%2 + 1
e5(x) = 32*x**x5 — 32*kx**3 + 6*x

1.001
0.75 4
0.50 1
0.25 4
0.00 4

|

-0.259 |
—0.50 1

—0.751

—1.00 4

» Laguerre polynomials

— Results of poly_spl.py:

e0(x) =1

el(x) =x -1

e2(x) = x**2/2 - 2xx + 1

e3(x) = x**3/6 — 3xx*%x2/2 + 3*x - 1

— Results of poly_sp2.py (The graph is multiplied by a weight function.):

e0(x) =1

el(x) =1 - x

e2(x) = x**x2/2 - 2%x + 1

e3(x) = —-x**x3/6 + 3*x**x2/2 - 3xx + 1

ed(x) = x**4/24 — 2xxxx3/3 + 3*x*k*2 — 4xx + 1

e5(x) = -x**5/120 + Bbxx*%4/24 - B*x**3/3 + bkx*x*x2 — bxx + 1
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1.01

0.8 1

0.6

0.4

0.2 1

0.0 -

-0.2

o
N
EN
o4
oo
.
o

o Hermite polynomials

— Results of poly_spl.py:
e0(x) = pix*(-1/4)

el(x) = sqrt(2)*x/pix*(1/4)
e2(x) = sqrt(2)*(xx*2 - 1/2)/pi**(1/4)
e3(x) = 2*sqrt(3)*x(x**3 - 3xx/2)/(3*pix*(1/4))

— Results of poly_sp2.py (The graph is multiplied by a weight function.):

e0(x) =1

el(x) = 2*x

e2(x) = 4*xx*k*x2 - 2
e3(x) = 8*x**3 — 12%x

ed(x)
e5(x)

16xx**x4d — 48*xx*xx2 + 12
32xxx*x5 — 160*x**3 + 120%*x

30 A

201

10 A

—-10

—20

—304
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Exercise 6.19. Find the matrix representation of the discrete Fourier transform,

that is, the basis change matrix from the standard basis to {eg, e1,...,€, 1}
Let denote ‘
627r7,kt0
1 62ﬂ'ik‘t1
e, = — (k=0,1,2,...,n—1).
Vn :
627Tik‘tn,1
Since
(eo | )
) (e1 | z) .
x = . = leo €1 e -+ enq] w,
(vt | )
. * -1 . .
it follows that [eg e ey --- en_l] = [eo e ey --- en_l} is the representation
matrix of the Fourier tarnform, which is
2
e}
* *
[80 e €y --- en,d = €
*
B e—2mi-0-to e—2mi-1-to e—2mi-2+to 672Tri(n71)t0 T
o—2mi0-t1 o—2milt e2mi2t . p=2mi(n—1)t
_ 1 p-2mi0ty  o=2midity 2wty . p—2mi(n—1)t
NLD
o= 2mi0tn_1  p=2miltn 1 o—2mi2tn 1 o= 2mi(n—1)tn—1
. . 1 n—1 . o
Especially, if tg,t1,...,t,_1 are 0, —, ..., respectively, then it is
n
e—2mi0:0/n e—2mi-1:0/n e—2mi2:0/n e—2mi(n—1)-0/n 7
6—27ri'0-1/n e—27ri-1~l/n e—27‘ri-2~1/n . 6—27ri(n—1)1/n
. 6—27ri~0-2/n e—27ri-l~2/n e—27‘ri-2-2/n . 6—27ri(n—1)2/n

1
NG

672m’-0‘(n71)/n 67271'1'-1.(7171)/71 6727ri~2'(n71)/n 6727Ti(n7'1)(n71)/n
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Exercise 6.20. Though the sounds of the notes C, E, and G were added at the
same ratio, the peak pitches are different. This is because their frequencies are not
integers. Change Line 8 of the above program to zoom in near the peaks of frequency
and observe.

Program: power_spectrum.py

import matplotlib.pyplot as plt
from sound import Sound

sound = Sound('CEG')

fig, ax = plt.subplots(l, 4, figsize=(20, 5))

6 |ax[0].plot (*sound.power_spectrum((500, 800)))

7 |ax[1] .bar (*sound.power_spectrum((518, 528)), width=0.2)
8 lax[2] .bar (xsound.power_spectrum((655, 664)), width=0.2)
9 ax[3].bar (*sound.power_spectrum((783, 785)), width=0.05)
10 | plt.show()

Line 2: We use the program sound.py given later in this section as a library.

Line 4: Load the wav file CEG.wav of the cord CEG created by the program chord.py in
Section 2.4.

Line 5: Display four graphs side by side.

Line 6: The frequencies of the C(do), E(mi) and G(sol) scales are 523.251131 Hertz,
659.255114 Hertz and 783.990872 respectively. Check the graphs to see that the spectrum
appears around these frequencies (the first graph from the left in the figure below).

Line 7: Check the spectrum around 523.251131 Hertz on the graph (the second one).

Line 8: Check the spectrum around 659.255114 Hertz on the graph (the third one).

Line 9: Check the spectrum around 783.990872 Hertz on the graph (the fourth one).

le7 le7 le7 le7

175

: 1] 1]
0.00 | Ls 0.00 iy | L 0
500 550 600 650 700 750 800 518 520 522 524 526 528 656 658 660 662 664 783.00783.25783.50783.75784.00784.25784.50

Since the frequency of the G sound is close to an integer value, only one spectrum of the
G sound appears. The frequencies of the other two sounds are apart from integer values, so
the spectrum appears distributed around their respective frequencies. Adding up the lengths
of the scattered sticks for both the C and E sounds should equal the height of the stick for
the G sound (since the strengths of the sounds are the same, according to the Riesz-Fisher
equality ).
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Exercise 6.21. Give a reason why the power spectrum appears symmetrically
around 0. Hint: This is generally true for the discrete Fourier transform & € C"
of real vector € R™ (but not for complex vector & € C").

Since f is real-valued,

@l = [ e ) ds = / "cos (2ks) f (5) ds — i / i (2mks) f (s) ds,

it follows that

[ew | P = cos (2mks) f ) ( sin (27ks) (s)ds)2

\/01 2
/0 " cos (2mks) ) ( /0 sin (27ks) f )ds)
[ X

cos (—2mks) f s> +( —orks) ()ds>2
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Exercise 6.22. Listen to the sound of mono3000.wav and compare it with the origi-
nal sound mono.wav. Also, display the power spectrum of the sound of mono3000. wav.
Moreover, experiment with different cutoff frequencies to observe what happens.

Program: lowpass.py

00 ~J O U i W N

e e
W N = O ©

import matplotlib.pyplot as plt
from sound import Sound

K = 3000
sound = Sound('mono')
X, Y = sound.time, sound.data

Y_K = sound.lowpass (K)

fig, ax = plt.subplots(l, 2, figsize=(20, 5), dpi=100)
ax [0] .plot (X, Y), ax[0].plot(X, Y_K)
ax[0].set_ylim(-1, 1)

ax[1].plot (X, Y), ax[1].plot(X, Y_K)

ax[1] .set_x1im (0.2, 0.21), ax[1].set_ylim(-1, 1)
plt.show ()

By changing the value of K in Line 4 of the program (lowpass.py), we can observe the

waveform of sound that has passed through a low-pass filter with various cutoff frequencies,
and can also create a wav file of that sound. The program sound.py of Section 6.7 is used
as a library, so copy and put it in the current folder.

> U A W N

-J

40000

30000

20000

10000

import matplotlib.pyplot as plt
from sound import Sound

sound = Sound('mono3000"')
plt.figure(figsize=(20, 5))

plt.plot (*sound.power_spectrum((-4000, 4000)))
plt.show ()

—4000 —3000 —2000 —1000 0 1000 2000 3000 4000

Cutoft frequency 3000
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40000 1

30000

20000

10000 -

—4000 —3000 —2000 —1000 0 1000 2000 3000 4000

Cutoff frequency 1500
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Exercise 6.23. Check that the inverse Fourier transforms of U in Line 28 is
an array of complex numbers with imaginary part 0 by drawing the graph of
fft.ifft(U).imag. Consider the mathematical reason why the low-pass filter of
a real vector by the Fourier transform and its inverse are also real vectors.
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Program: sound.py

1
2
3
4
5

DO DN DN DN
U = W N — O

O I

W W W NN NDNDDNDDIN
S oC

N

from numpy import arange, fft
import scipy.io.wavfile as wav

class Sound:
def __init__(self, wavfile):
self.file = wavfile

self .rate, Data = wav.read(f'{wavfile}.wav')

dt = 1 / self.rate

self.len = len(Data)

self.tmax = self.len / self.rate
self.time = arange(0, self.tmax, dt)
self.data Data.astype('float') / 32768
self.fft = fft.fft(self.data)

def power_spectrum(self, rng=None):
spectrum = abs(self.fft) x** 2
if rng is None:
rl, r2 = -self.len / 2, self.len / 2
else:

rl, r2 = rng[0] * self.tmax, rng[l] * self.tmax

R = arange(int(r1l), int(r2))
return R / self.tmax, spectrum[R]

def lowpass(self, K):
k = int(K * self.tmax)
U = self.fft.copy()
Ulrange(k + 1, self.len - k)] = 0
V = fft.ifft (U)
Data = (V.real * 32768) .astype('int16')

wav.write(f'{self.file}{K}.wav', self.rate,

return V.real, V.imag

Program: lowpass.py

1
2
3
4
5

‘import matplotlib.pyplot as plt
‘from sound import Sound
‘sound = Sound ('mono')
‘X, Y = sound.time, sound.data

Data)
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Y3000, Z3000 = sound.lowpass (3000)

fig, ax = plt.subplots(l, 2, figsize=(10, 5))

9 ax[0].set_ylim(-1, 1)

10 |ax[0].plot (X, Y), ax[0].plot(X, Y3000), ax[0].plot(X, Z3000)
11 |ax[1] .set_x1im (0.2, 0.21), ax[1].set_ylim(-1, 1)

12 |ax[1] .plot (X, Y), ax[1].plot(X, Y3000), ax[1].plot(X, Z3000)
13 | plt.show()

1.00 1.00
0.75 0.75
0.50 - 0.50
0.25 0.25
0.00 - 0.00
-0.25 -0.25
—0.50 ~0.50
~0.75 -0.75
-1.00 1= . . . : . —  -1.00 : : : :
0.00 025 050 075 1.00 125 150 0.200 0.202 0.204 0.206 0208 0.210

In the graphs of the original data, the real part of a low-pass filter with a cutoff frequency
of 3000, and its imaginary part are overlaid. The one on the right is an enlarged part. It can
be seen that the imaginary parts are all identically the zero function.

Since f is real-valued,

<ek | f> = /01 e 2R £ () ds = /01 cos (2rks) f (s) ds —i/ol sin (27ks) f (s) ds
it follows that

(ex | f)ex(?)
= CoS (27Tkt)/0 cos (2mks) f (s) ds + sin (27rkt)/0 sin (2rks) f (s) ds

1 1
—icos (2mkt) / sin (27ks) f (s) ds + isin (27kt) / cos (2mks) f (s) ds.
0 0

Hence, we have

<€k | f> €L (t) -+ <€_k ‘ f> C_k (t)

= 2cos (2wkt) | cos(27ks) f (s)ds + 2sin (27wkt) /1 sin (27ks) f (s)ds
0 0
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for £ > 0 . On the other hand, becouse of

(eo | feolt) = S (s)ds

we can conclude that

Observe the graph after the Fourier transform.

08

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

o
-

2 3 4 5 6

Graph of original data

‘
0 1 4 5 6

2 3

Graph of the real part of the Fourier transform

—

2 3

Graph of the imaginary part of the Fourier transform
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100

Graph of the Fourier transform

200
150
100
50
0
=50
-100
-150
—200

0.26 150
100

0.28 50
0

=50

—100

0.32 -—150

0.30

Enlarged part of the graph of the Fourier transform

Actually, the red dots represents the values of the function. The blue line connects them

to form a line graph.
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Supplement: How to divide the figure and draw multiple graphs with Matplotlib

Suppose we want to draw a graph like this:

1.044

1.02 4

1.00 4

0.98 1

0.96 1

1.00 4

0.751

0.50 1

0.251

0.001

—0.25 4

—0.50 -

—0.75 A

—1.00 4

1.00 1.0
0.75
0.8
0.50 1
0.25 1 061
0.00 1
—0254 0.4
-0.50
0.2
~0.751
~1.001 0.0 {
. . . . . . . . . . . . . . .
-1.0 -05 0.0 05 1.0 -1.0 —05 0.0 05 1.0 -1.0 -05 0.0 05 1.0
1.0 1.00
0.75
0.8
0.50
061 0.25
0.00
041 ~0.25
~0.50
0.2
~0.75
0.0 ~1.00 1
. . . . . .
-1.0 -05 0.0 0.5 1.0 -1.0 —05 0.0 0.5 1.0 -1.0 -05 0.0 05 1.0

It’s a little confusing, but there are two ways: using the subplots method and using the
subplot method.

1. using the subplots:

In [1]:

Program: graphl.py

1
2
7

=

—

I d

3
il
)
)

oo

9
10
11
12

13

from numpy import *
import matplotlib.pyplot as plt

fig, ax = plt.subplots(2, 3, figsize=(9, 6))
x = linspace(-1, 1, 100)
for i in range(2):
for j in range(3):

ax[i] [j].plot(x, x**x(i*3+j))

xmin, xmax = ax[i][j].get_x1im()

ymin, ymax = ax[i][j].get_ylim()

ax[i] [j].text (zxmin, ymax, f'ax[{i}][{j}]', color='r',

fontsize=24, ha='left', va='top')

plt.show ()

Line 4: Prepare to draw the figure by dividing it into 2 rows and 3 columns. The
figure size specification (9, 6) means that the width is 9, the height is 6, and the unit
is inches. Note that the vertical and horizontal sides are reversed.

Line 8: Plot the graphs on the area of the i-th row and the j-th column for i = 0,1
and j =0, 1,2.
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1.044

1.021

1.001

0.98

0.96

1.00

0.75

0.50

0.25

0.00

-0.25

—-0.50

-0.75

-1.00
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ax[0][0] 1o @X[O0][1] 10{ax[0][2]

0.75

0.8

0.50

0.25 061

0.00 1

~0.25 1 041

~0.501

0.2

~0.75 1

~1.001 0.0
-10 ~05 00 05 10 -10 -05 0.0 05 10 -10 -05 0.0 05 10
PxI11[0] 1o X[1][1] ro@aX[1][2]
i 0.75

0.8
i 0.50
1 0.6 0.25
i 0.00 1
4 0.4 ~0.25 1
i ~0.50

0.2
g ~0.75
i 0.04 ~1.001
; . . . . . , . . . ; T . . .
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 05 1.0 -1.0 -05 0.0 05 1.0

2. using the subplot method:

In [1]:

Program: graph2.py

10
11
12
13
14
15
16

from numpy import *
import matplotlib.pyplot as plt

fig = plt.figure(figsize=(9, 6))
x = linspace(-1, 1, 100)
k = 230
for i in range(2):
for j in range(3):
k += 1
plt.subplot (k)
plt.plot(x, x**(i*3+j))
xmin, xmax = plt.xlim()
ymin, ymax = plt.ylim()
plt.text (xmin, ymax, f'k={k}', color='r',
fontsize=36, ha='left', va='top')
plt.show ()

Line 4: Specifies the size of the figure.

Line 10, 11: plt.subplot(k) switches the drawing region. In this example, k =

231,

232,233,234, 235,236. The drawing area is specified by this 3-digit integer d;dsds,

which means the dsth region from the upper left corner to the lower right corner with
horizontal priority in the region divided into d; rows and ds columns. di,ds,ds must
be integers between 1 and 9. After switching, draw the graphs with the plot method.



In [1]:

1.044

1.021

1.001

0.98

0.96

1.0

S

0.50 4

0.25 4

0.00

-0.25

—-0.50

-0.75

-1.00
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k=231 k=232 k=233

0.75
0.8
050
0.25 061
0.00
~0.25 1 041
~0.50
0.2
~0.754
~1.00 0.0
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 05 1.0

k=234 «k=235 k=236

0.754

0.75
0.8
0.50
0.6 0.25
0.00 1
0.4 —0.25
~0.50
0.2
~0.75
0.0 ~1.001
; . . . . . , . . . ; T . . .
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 05 1.0 -1.0 -05 0.0 05 1.0

Program: graph3.py

15

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(9, 6))
x = linspace(-1, 1, 100)
k =
for i in range(2):
for j in range(3):

k += 1

plt.subplot (2, 3, k)

plt.plot(x, x**(i*3+j))

xmin, xmax = plt.xlim()

ymin, ymax = plt.ylim()

plt.text (xmin, ymax, f'k={k}', color='r',

fontsize=36, ha='left', va='top')

plt.show ()

Line 10: If the drawing location cannot be represented by a 3-digit integer, use this
line. In this example, k = 1,2,3,4,5,6. The drawing location is the kth area from the
upper left corner to the lower right corner with horizontal priority. Note that k starts

at 1.
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k=1 vl =2 k=3
1.04 - 0751
0.8
050
1.02-
0.25 061
1.00- 0.00
~0.25 1 041
0.98 1
~0.50
0.2
0.96 1 —0.751
~1.00 0.0
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 05 1.0
1.00~k_4 1.0 _5 1.00~k_6
0.751 0.75
0.8
0501 0.50
0.251 064 0.25
0.004 0.00
-0.251 0.4 —0.25
~0.50 - ~0.50 1
0.2
~0.75 1 ~0.751
~1.001 0.0 ~1.00 1
. . . . . . . - . . : . . . .
-1.0 ~05 0.0 05 1.0 -1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 05 1.0

Therefore, using the second method described above, lowpass.py after line 8 can also be
rewritten as follows.

Program: lowpass.py
In [1]: 1 |fig = plt.figure(figsize=(10, 5))
2 |plt.subplot (121)
3 plt.ylim(-1, 1)
4 |plt.plot(X, Y), plt.plot(X, Y3000), plt.plot(X, Z3000)
5 plt.subplot (122)
6 plt.xlim (0.2, 0.21), plt.ylim(-1, 1)
plt.plot(X, Y), plt.plot(X, Y3000), plt.plot(X, Z3000)
8 plt.show()

EN |

Note that lines 10 and 13 specify the axis limits differently.
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Exercise 7.10 | Sect. 7.3. p.168 When is a real matrix of order 2 normal?
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Exercise 7.1. Prove that A is a unitary matrix if it preserves the inner product.

Let A be a square matrix of order n. If A preserves the inner product, then
(A"Az |y) = (Az | Ay) = (z|y)

for all ,y € K". Therefore A*A = I. From this equality, we have A* = A™'.
A is a unitary matrix if A preserves the norm, using the polarization identity given in
Exercise 6.6.
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Exercise 7.2. For a diagonal matrix A = diag (A1, Ao, ..., \,), show the following
equivalences:

(1) A is a Hermitian matrix < A,..., A\, € R,
(2) A is a unitary matrix < |\ =---=|\,| =1,
(3) A is a positive definite matrix < Ay,..., A, >0,
(1)

A is a positive semi-definite matrix < Aq,..., A\, = 0.

A is a Hermitian matrix < diag (A, Ag, ..., \,) = diag ()\_1, Ao, .. ,)\_n)
<~ )\1:)\_1,)\2:)\_2,...,)\n:)\_71
S AL A, A ER

A is a unitary matrix < diag (A, Ag, ..., \,) diag (}\_17)\_2,,)\_n) =1
& diag( )\1, )\2)\2, cee )\n)\_n) =1
S =Pl == =1
& ])\1]:|)\2|:---:\)\n|:1.

A is a positive definite matrix

<w ‘ dlag )\1,)\2,..., )zc> >0foralle e K"if x #£0

A |3:1| + A2 |:U2\ it A, |xn|2 > 0 for all zy,29,...,2, e Kif xy29---2, #0
A Agr . Ay > 0.

Tt

A is a positive semi-definite matrix

s (x| dlag )\1,)\2,...,/\ )@ >>0foralleK”
&SN \:1:1\ + Ay |x2] 4+ A, ]wn] >0 for all z1,29,...,2, €K
S AN, A 20,
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Exercise 7.3. Let a,b,c € R and consider a symmetric matrix A = CCL g] . Prove

that A is positive definite over R if and only if @ > 0,b > 0 and ab > 2.

A is positive definite over R

& (x| Az) > 0for all x € R* with ¢ # 0
Xz a cC X . 2 2
& <Lj [c b] [y1>>0forallx,yeﬂ%w1thx +y #0

& ax? 4 2cxy + by? > 0 for all z,y € R with 22 4+ y* # 0

We obtain the desired condition by applying the quadratic discriminant D = 4 (¢* — ab) to
the last condition.
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Exercise 7.4. Let P be an orthogonal projection in K" and let « (# 0) € K". Show
that a scalar a € K satisfying Px = ax is only 0 or 1.

Put P = proj,, and consider the orthogonal decomposition € = @, + x2 by ; € W
and x, € W+. Because of & # 0, at least one of ; and x, is not a zero vector. Suppose
Px = ax. Since Px = x4, it follows that x; = ax, + axy. Therefore, we have

(a—l)xl—i—awg = 0.

Assume that both x; and x5 are nonzero vectors. Since these must be linearly independent,
we have a — 1 = a = 0, which is a contradiction. Therefore, one of x; and x5 is the zero
vector and the other is not. If &1 = 0, then axs = 0 and x5 # 0, so we get a = 0. If x5 =0,
then(a — 1) o = 0 and x; # 0, so we get a — 1 = 0, that is, a = 1.
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Exercise 7.5. Prove that a matrix A is regular if and only if A does not have zero
eigenvalue.

Let A be a square matrix of order n. Then, f : * — Ax is a linear mapping of
f K" — K" and satisfies

A does not have zero eigenvalue < Ax = 0x = 0 implies 0
kernel (f) = {0}
f is injective

f is bijective (Remark after the dimension theorem)

S

A is regular.
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Exercise 7.6. Compute the eigenvalues and eigenvectors of a matrix generated by
the program above without the aid of a computer. Next, solve the same problem
with the aid of a computer.

3 2
Solve for L 31. From

the eigenpolynomial is A2 — 6\ + 7 = 0. Solving this gives eigenvalues A = 3 — v/2, 3 + /2.
Find the eigenvector for the eigenvalue 3 — v/2. For this we solve

HEIHEE R

and get x = —/2y, where y is an arbtrary constant. For instance, putting y = 1, we have
an eigenvector {_ﬂ for the eigenvalue 3 — /2.

Find the eigenvector for the eigenvalue 3 + /2. For this we solve

1G] - e ]
1 3| |y Y
and get © = /2y, where y is an arbtrary constant. For instance, putting y = 1, we have an

eigenvector {?} for the eigenvalue 3 + /2.

Next, solve for {_33 g] From

F—A 3

-3 2—A’:0’

5 =135 5+ V3
2 ’ 2 '

the eigenpolynomial is A2—5A+15 = 0. Solving this gives eigenvalues \ =

5 —/35i
2

To find the eigenvector for the eigenvalue , we solve

S f) - =0

-3 2| |y 2 Y

, where y is an arbitrary constant. Therefore, putting y = 1, we

5 — /351
S

—y + /350y
and get x = — 6

—1++/35¢
have an eigenvector { ? ] for the eigenvalue
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5+ v/35i
2

To find the eigenvector for the eigenvalue , we solve

) - =

-3 2| |y 2 Y
—y — V351
and get x = %, where y is an arbitrary constant. Therefore, putting y = 1, we
—1—V/35i 5+ /35t
have an eigenvector { i } for the eigenvalue +T
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Exercise 7.7. The following program randomly generates a square matrix of order
3 whose characteristic polynomial can be factorized into linear factors over Z, and
so the eigenvalues are all integers. Compute the eigenvalues and eigenvectors of a
matrix generated by the program without aid of a computer.

-2 -1 -1
Solve for |—2 3 —=3]|. From
-2 -2 -3
—-2—-X -1 -1
-2 3—A -3 = 0,
-2 -2 —=3-=-A

the eigenpolynomial is —A3—2A2+19A+20 = 0. Foctorizing this, we have — (A —4) (A + 1) (A +5) =
0 and then we get eigenvalues A = —5, —1,4.
Find an eigenvector for eigenvalue —5. Considering

-2 -1 —-1] |z T
-2 3 3| |y| = -5|yl|,
-2 =2 3| |z z
z z 1
we get x = 3 ¥=3 where z is an arbitrary constant. Therefore, if y = 2, then |1| is an
2
eigenvector for eigenvalue —5.
Find an eigenvector for eigenvalue —1. Considering
-2 -1 —-1f |z z
=2 3 3|yl = — v,
-2 =2 =3 |z z
Tz z . . :
we get © = R y = G where z is an arbitrary constant. Therefore, if z = 6, then we get an
—7
eigenvector 1| for eigenvalue —1.
6
Find an eigenvector for eigenvalue 4. Considering

-2 -1 —1f |z x
-2 3 3| |yl = 4|y,
-2 =2 3| |z z

we get x = —, y = —4z where 2 is an arbitrary constant. Therefore, if z = 2, then we get a

z

2

1

eigenvector | —8| for eigenvalue 4.
2
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Exercise 7.8. Make another matrix with prob2.py, and diagonalize it in the same
manner as above.

-2 -1 -1
Here, we will diagonalize the matrix |—2 3 —3| used in Question Exercise 7.7. Make
-2 -2 =3
V with the three eigenvectors as column vectors obtained above:
1 -7 1
V=11 1 -8
2 6 2
Calculate its inverse matrix:
50 20 55
o Ll g 0
801y 90 s
Hence, we get the diagonalization
-5 00
V1AV = 0 -1 0
0 0 4

of A.
The arrangement of diagonal components is optional. Making V' by arranging the eigen-

vector corresponding to 4, -1, -5,

1 -7 1
V = —8 1 1
2 6 2
[ts inverse matrix is
1 4 —-20 8
-1 - — | —18 0 9
1801 50 90 55

Hence, we get diagonalization



Exercise 7.9. Suppose that a matrix A is diagonalized as V'AV =
diag (A1, A2, .., \,) by a regular matrix V. Prove the following results from (1)
to (4):

1) rank (A) is equal to the number of nonzero elements of i, A, ..., A,
2) det (A) = Mg -\,

3) Tr(A) =M+ X+ + Ay,
1) A7' = Vdiag (A7, A, .. A ) VL A s regular.

ron

(
(
(
(
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(1) Because rank is an invariant, rank A = rank diag (A1, A, ..., A,). Since
)\1271
)\2(132
range (diag (A, Ao, ..., Ay)) = . T1,%9, ..., 0p EK 3,
Anln

the dimension of this subspace is the number of non-zero values among \;, Ao, . ..
A

(2) Because det is an invariant,
det (A) = det (diag (A1, A2, ..., An)) = AAa-- Ay
(3) Because Tr is an invariant,
Tr(A) = Tr(diag (A, Ao, .., \)) = M+ X+ + A\
(4) If A be a regular matrix, none of A\, Ag,..., A\, is 0, and we get

diag (A1, Ao, ..., A) 1 = diag (AL 00 ).

'

Hence
A_l - (Adiag()\la)\QJ"'7 A 1) -t
= (A_l) diag (A1, Ao, ..., \n) ™ Y
= Adiag()\ll,)\gl,...,/\;)Al

and
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Exercise 7.10. Confirm the result above without using SymPy.

Since
T, _ |a c|fa b]  [a®+* ab+cd
AA = {b d} L d} = [ab+cd B2
r _ la b]fa c| _ [a®+V* ac+bd
A4° = [c d] [b d} - {achbd A+d*|

if ATA=AAT", then we get
A =V, ab+cd = ac+ bd.

a b
b d
is a normal matrix. If ¢ = —b, from ab — bd = —ab + bd we get ab = bd, and so either b = 0

From 2 =b%, c=borc=—b. If c=0b, ab+ cd = ac + bd always holds. Then, A = [

or a = d holds. When ¢ = —-banda=d, A= _Z 2} is a normal matrix. When ¢ = —b
and b=0, A = g 2 is a diagonal matrix. Therefore, a normal matrix A of order 2 takes

one of the following shapes:

[Z Z] (a symmetric matrix) and [_Z Z] (a scalar multiple of an orthogonal matrix).



Exercise 7.11. Prove that the properties of being (1) normal, (2) Hermitian, (3)
unitary, (4) positive (semi-)definite and (5) an orthogonal projection are all unitarily
invariant over C.

169

Let A be a square matrix and U a unitary matrix.

(1)

If A is a normal matrix, that is A*A = AA”, then, since
(U*AU)" (U*AU) = U'A'UU*AU = U'A*AU = U"AA'U

= U'AUU*A'U = (U'AU) (U*AU)",
U* AU is a normal matrix.
If A is a Hermitian matrix, that is A* = A, then, since

(U*AU)" = UA*U = U*AU,

U* AU is a Hermitian matrix.
If A is a unitary matrix, that is A*A = I, then, since

(U*AU)" (U*AU) = U'A'UU*AU = U'A*AU = U'U = I,
U* AU is a unitary matrix.
Let A be a positive definite matrix and & be a nonzero vector, then

<zc | Aa:> > 0.
Because Ux is a nonzero vector, we have
(x | U'AUz) = (Ux ‘ AUz) > 0.

Threrfore, U* AU is a positive definite matrix. Similarly, if A is a positive semi-definite
matrix, so is U"AU.

Note that A be an orthogonal projection if and only if A* = A*> = A. Let A be an
orthogonal projection. Since A is a Hermitian matrix, so is U*AU. On the other
hand, we have

(U*AU)’ = U*AUU*AU = U*A*U = U*AU.

We can conclude that U* AU is also an orthogonal projection.
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Exercise 7.12. The following program randomly generates a real normal matrix of
order 2. Diagonalize a matrix generated by this program by a unitary matrix.

Qi\/ﬁ]
3 )

Matrix [g _g} has eigenvalues ++/13 and these associated eigenvectors are {

whose norms are /26 £ 441/13 respectively. By normalizing these vectors we make a unitary
(orthogonal) matrix

\/26—34\/ﬁ \/26—54\/ﬁ
V26—4V/13 /264413
By this uniatry matrix we get diagonalization

—V13 0}

2—/13 2413
U - [ ]

jiq whose

norms as same /2. By normalizing these vectors we make a unitary (orthogonal) matrix

o= 5[t )

By this uniatry matrix we get diagonalization

U*AU = {2532 0 }

Matrix {_23 g] has eigenvalues 2 + 37 and these associated eigenvectors are [

2+ 30



Exercise 7.13. Let A and V be square matrices of order n, where V is regular.
Prove the equality

171

1
eV AV . Ve leAV

We need some technique of analysis.

A

“lav V_leAVH
. "(vlav)t & (vtav)t
€V AV_ZT—i_ T_V 1€AV
k=0 k=0
. " (VlAV) " (VAV
(V'AV) ( -
eV AV—Z o o —VilAvV (%)
k=0 k=0
The first term of (%) tends to 0 as n — oo. Since
" vlAtvV A AF A
> _VeVH: Zk__ Vo
k=0 k=0
n Ak
Gty
k=
_ A*
< Vg et v,
k=

the second term of (x) also tends to 0 as n — co. Hence, we have the desired equality.
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Exercise 7.14. Diagonalize A = [ % % } first, and then compute a general term
of A" and exp (A).

The eigenpolynomial of A is

1—-A 2
2 1—A

o

Since A2 — 2\ —3 = (A —3) (A + 1) = 0, the eigenvalues of A are 3 and —1. Let [ ;j } be a

eigenvector associated with 3. It follows that

BRI

and that 2z — 2y = 0. Hence, { 1 } is an eigenvector associated with 3. On the other hand,

let [ z } be a eigenvector associated with—1. It follows that

ERIMESH

and that 2z 4+ 2y = 0. Hence, is an eigenvector associated with —1. Sincec A is

1
a Hermitian matrix, it can be diagonalized by a unitary matrix. Normalizing both vectors

1 —1 1 11 1 | -1 . .
[ 1 } and [ 1 ], we have vectors E [ 1 } and E [ 1 } of norm 1 respectively. Using

these vectors, we make a unitary (orthogonal) matrix U such as

o=yt 11)

sarr _ |3 0
U*AU = [0 _1].

is the diagonalization of A by unitary matrix U. Since

Then,

U*A'U = (U°AU)" = {g _ﬂn - {38 (_1)91,
we get
SRR L Pt | S | Y
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Moreover, since

U exp(A)U = exp (U*AU) — equ?’ OD = [63 O},

we get

o =l o= 4[5 (]
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Exercise 7.15. For a square matrix A with ||A| < 1, show that I — A is regular
and

I-A)7" = iA”

holds (Hint: first prove that ZA” converges and then show the equality

n=0

(I—A)iA”:I).

Because 1 > ||A]|,

oo o0 1
jar £ A = ——
2 2 [ [ 4]

is satisfied and Z A" exists. Then,

n=0
0 2 |[T-A4)) A" —T
n=0
[e%S) k
= |[(I—-A4) (ZA”—ZA”)—A’““
n=0 n=0
o0 k
< Ju-a(Sa-ya) e
n=0 n=0
0o k
< T-Al > A A+ Ayt
n=0 n=0
The last side tends to 0 as k — 00, so we have
= 0.

(I—A)iA”—I

This says
(I-A)) A" =1
n=0

o0
and shows Z A" is the inverse matrix of I — A.
n=0
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Jordan Normal Form and Spectrum

Exercise 8.1 | Sect. 8.1. p.184 | Invariant subspaces

Exercise 8.2 | Sect. 8.2. p.193 | Computation of the Jordan normal form*
Exercise 8.3 | Sect. 8.4. p.201 | Gelfand’s formula*

Exercise 8.4 | Sect. 8.5. p.204 | The Peron-Frobenius eigenvalue*

* Using Python
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Exercise 8.1. Prove that K and R are invariant subspaces of f.

If z € K, there exists k such that & € K®. Then, since f*'(f(z)) = f*(z) = 0, we
have f () € K*~1) C K. Hence, K is invariant subspace of f.

If y € R, then y € R® for every k = 0,1,2,.... Since f (y) € R**D C R® for arbitrary
k, it follows that f (y) € R. Therefore, R is an invariant subspace of f.
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Exercise 8.2. The following program generates an exercise for Jordan normal form
and Jordan decomposition (see the next section). Solve the problem generated by
this program by hand.

The following program is jordan2.py modified to output in LaTeX format.

Program: jordan2.py

In [1]: from sympy import x*

from numpy.random import seed, permutation

def latex_output(a, x):

]
2
3
| | seed (2021)
5
6 A = f'{latex(x)}'

7 B =A.replace(r'\begin{matrix}', r'\begin{array}{rrr}\\')
8 C = B.replace(r'\end{matrix}', r'\\\end{arrayl}')

9 L = C.split(r'\\")

10 print(a + L[0])

11 print (' '#4 + L[1] + r'\\"'")

12 print (' '+¥4 + L[2] + r'\\"')

13 print (' '+¥4 + L[3] + r'\\"')

14 print (L[4])

16 |X = Matrix([[1, 1, 0], [0, 1, 0], [0, O, 211)
= Matrix([[2, 1, o], [0, 2, 1], [0, O, 2]1)
18 Z = Matrlx([[Q, 1, O], [O: 2: O]: [O) O: 2]])

3
<

20 'while True:

21 A = X.copy (O

22 while O in A:

23 i, j, _ = permutation(3)
24 Al:, jl1 += A[:, il

25 Ali, :]1 -= A[j, :]

26 if max(abs(A)) >= 10:

27 break

28 if max(abs(A)) < 10:

29 break

30 /U, J = A.jordan_form()

31

32 |latex_output('A = ', A)

33 |latex_output('U = ', U)

34 | latex_output ('Ux*(-1)*AxU = ', J)
3

t

C = U * diag(J[0, 0], J[1, 11, J[2, 2]) * Ux*x(-1)
36 |[B=A-2C

latex_output ('B ', B)

8 | latex_output ('C ', C)




In [2]:

Out [2] :

In [3]:

Out [3]:
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A = \left[\begin{array}{rrr}
2 & 4 & 4\\

-4 & 3 & -1\\
2 & -4 & -1\\

\end{array}\right]

U = \left[\begin{array}{rrr}
\frac{24}{7} & - \frac{4}{7} & - \frac{1}{2}\\
\frac{30}{7} & 1 & -1\\
- \frac{36}{7} & 0 & 1\\

\end{array}\right]

Ux*(-1)*A*U = \left[\begin{array}{rrr}
1 & 1 & 0\\

0 & 1 & O\\
0 & 0 & 2\\

\end{array}\right]

B = \left[\begin{array}{rrr}
8 & 8 & 12\\

10 & 10 & 15\\
-12 & -12 & -18\\

\end{array}\right]

C = \left[\begin{array}{rrr}
-6 & -4 & -8\\

-14 & -7 & -16\\
14 & 8 & 17\\

\end{array}\right]
2 4 A4
Find a Jotdan normal form of A = | —4 3 —1 |. The eigenpolynomial of this
2 -4 -1

matrix is =A% +4\2 — 5\ +2 = 0.

lmd = Symbol('lambda')
f = det(A - 1md * eye(3)); f

-lambda**3 + 4*xlambda**2 - b*xlambda + 2

This can be factorized as (A —2) (A —1)> = 0, and we get 1 and 2 as eigenvalues of A
Their multiplicity are 2 and 1 respectively.

factor (f)
-(lambda - 2)*(lambda - 1) **2

In order to find a eigenvector associated with the egenvalue 1, we solve the following
equation.

2 4 4 100 x 0
4 3 —1|-=1]010 y| =10
2 4 —1 00 1 2 0

We get x = —22/3, y = —52z/6, where z is an arbitrary constant. Hence, for example putting



In [4]:

Out [4] :

In [5]:

Out [5] :

In [6]:

Out [6] :

In [7]:

OQut [7] :

In [8]:

179

z = 6, we have a eigenvector

associated with the eigenvalue 1.

X, y, z = symbols('x y z')
v = Matrix([x, y, z]); v

Matrix ([
[x],
[y]l,
[z11)

ans = solve((A - val[O0]lxeye(3))*v, [x, y]); ans

{x: -2%z/3, y: -5*xz/6}

vil = v.subs([(x, ans[x]), (y, anslyl), (z, 6)]1); vil
Matrix ([

[-41,

[_5] >

[ 611D

The multiplicity of eigenvalue 1 was 2, so there is another vector linearly independent of
this eigenvector in the general eigenspace. To find it, solve

2 4 4 100 x —4
—4 3 —-1|-1]010 y| = | -5
2 —4 -1 00 1 2 6

Then, we get x = 2/3 —22/3,y = —52/6 — 7/6, whrer z is an arbitrary constant. Therefore,
for example putting z = 1, we get a vector

belonging to the generarized eigenspace associated with the eigenvector 1 which not a eigen-
vector.

ans = solve((A - val[O]lxeye(3))*xv - vil, [x, y]); ans
{x: 2/3 - 2*%z/3, y: -5xz/6 - T7/6}

vi2 = v.subs ([(x, ans[x]), (y, anslyl), (z, 1)1); vi2



Out [8]:

In [9]:

Out [9]:

In [10]:

Out[10]:

In [11]:

OQut[11]:

In [12]:

Out[12]:

In [13]:
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Matrix ([
[ o],
[-2],
[ 11D

Next, find an eigenvector associated with the egenvalue 2. By solving

2 4 4 2 00 x 0
-4 3 -1 [{—-10220 yl|l =101,
2 -4 -1 0 0 2 z 0
we get = —z/2, y = —z, where z is an arbitrary constant. Therefore, putting z = 2 we get a
eigenvector
-1
Vy = —2
2

assiciated with the eigenvalue 2. Since the multiplicity of the eigenvalue 2 is 1, the eigenspace
associated with the egenvalue 2 is the one dimentional subspace generated by this eigenvector.

ans = solve((A - val[0]l*eye(3))*v - vi1l, [x, y]); ans
{x: 2/3 - 2xz/3, y: -bxz/6 - 7/6}
v12 = v.subs([(x, ans[x]), (y, anslyl), (z, 1)1); vi2

Matrix ([
[ o],
[-21,
[ 11D

ans = solve((A - val[ll*xeye(3))*v, [x, yl); ans
{x: -z/2, y: -z}

v2 = v.subs([(x, ans[x]), (y, ans[yl), (z, 2)]1); v2

Matrix ([

[_1]:
[-2],
[ 211D
Put

—4 0 —1

V d:ef [’UU V12 ’Ug] = -5 -2 =2

6 1 2

1 |V = Matrix([v11.T, v12.T, v2.T1).T; V
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Out[13]: Matrix ([
[-4, o0, -11,
[-5, -2, -2],
L6, 1, 211

Then
-2 -1 =2
v:i=1]-2 -2 -3
7 4 8
In [14]: 1 W = V**(-1); W
Out[14]: Matrix ([
[_2> _1) _2]’
[-2, -2, -31,
L7, 4, 811
Therefore, we get a Jordan normal form
110
VAV = |0 1 0
0 0 2
In [15]: 1 |WxA*V
Out[15] : Matrix ([
[1) 1) O]!
[0’ 1’ O]’
[0, o, 211>
Let
(1 0 0] [ 6 —4 -8
B =V|io1o0|V!=]-14 -7 —-16 |,
_O 0 2_ i 14 8 17
[0 1 0] [ 8 8 12
C =V|000|V!= 10 10 15
_000_ _—12 -12 —18

Then, B is a diagonalizable matrix, and C is a nilpotent matrix(C? = Q). Thus we get the
Jordan decomposition

A = B+C.

In [16]: 1 ‘D = diag(val[0], val[0], val[1]); D

Out[16]: Matrix ([
[1, 0, 0],
(o, 1, o1,
[0, 0, 211)
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In [17]:

Out[17]: Matrix ([

o] s
O] >
011)

to,
(o,
fo,

1,
0,
0,

In [18]:

Out[18]: Matrix ([

_4,

_7’
8’

[ -6,
[-14,
[ 14,
In [19]:

In [20]:

Out[20]: Matrix ([

[ 2, 4,
[_4’ 3’
[ 2, -4,

_8] s
-161,

1711)

4],
_1] s
-111)
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Exercise 8.3. Experiment with changing seeds in Programs norm.py and gelfand.py
and observe the convergences.

183

The following are examples of executing for square matrices of order 4 getting by appro-
priate seeds of random numbers.

norm.py
14 175
seed=229 seed=349 124 seed=463 149 seed=601
12 150 1.24
1.0 125 1.0
0.8 1.00 0.84
0.6 0.75 0.64
0.4 0.50 0.4+
02 025 A1 0.2
0.0 0.00 0 0.0 &
] 10 20 30 40 50 ] 10 20 30 40 50 10 20 30 40 50
129 - 144
seed=1013
1.0 1.24
084 1.0
0.8
0.64
0.6
0.4
044 B
021 Y 0.2
0.04 0.04 A
10 20 30 40 50
3.0 3549
seed=659 seed=941
2.54 3.0
25
2.5
2.0 2.0
2.0
15 1.54
1.5
1.0 1.0
1.0
05 051 05
0.0 0.01 0.0
10 20 30 40 50 10 20 30 40 50
2.5
2.00 seed=1373 o seed=1511
1.75
2.0
1.50
N
1.25 1.5
1.00
5]
0.75 1.04
0.50
0.5 11
0.25
0.00 0.0 04
] 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
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Exercise 8.4. Let A be the square matrix of order n whose elements are all 1. Find
the Peron-Frobenius eigenvalue of A and a positive eigenvector associated with it.

T1
T2
Let A be the Perron-Frobenius eigenvalue and & = | | | an eigenvector associated it .
T
Then,
1 I
1 )
Ax = (x1+ a9+ + 1) = A .
1 Ty
It follows that A = n and z; = x5 = --- = z,,. Hence, n is the Perron-Frobenius eigenvalue
1
1
and | .| is an eigenvector associated with it.
1

The following program verifies this when n = 100.

Program: exercise8_4.py

I | from numpy import pi, sin, cos, linspace, ones
2 |from numpy.linalg import eig, eigh
import matplotlib.pylab as plt

3

|

5 |N = 100

6 |X = ones((N, N))

7 |Lmd = eig(X) [0]

8 'r = max(abs(Lmd))

9 |T = linspace(0, 2 * pi, 100)

10 |plt.axis('equal')

11 |plt.plot(r * cos(T), r * sin(T))
12 | plt.scatter(Lmd.real, Lmd.imag, s=20)
13 | plt.show()
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100 A

75 A

50 1

25 1

—2541

—50 1

—75 1

—100 A

-100 =50 0 50 100
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Chapter 9

Dynamical Systems

Exercise 9.1 | Sect. 9.3. p.215 | A linear differential equation™®

Exercise 9.2 | Sect. 9.3. p.217 | Simulation of a dynamical system*

Exercise 9.3 | Sect. 9.4. p.219 | Numerical semigroups*

Exercise 9.4 | Sect. 9.4. p.219 | Irredusible and appeoriodic transition matrices
Exercise 9.5 | Sect. 9.6. p.229 | One parameter semigroups

* Using Python
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Exercise 9.1. Let A = il)) _? . Solve the differential equation z'(t) = A z(t) and

draw the trajectories of the solutions for several initial values.

11— =2
3 1—-2A
In order to find eigenvectors, we solve

5 ][] = 0= @]

el - )

For the eigenpolynomial

’ = A2 -2\ +7 = 0, we have eigenvalues 14 /6.

that is,

1
Puting © = 1, we get eigenvectors {$ \/éi:| associated with eigenvalues 1 4 v/6i respectively.
2
Let
def 1 1
-
2 2
Then
1 1 _ v6i
L R
2 6
and
1 67 0
VI'AV = :
{ 0 1+ \/62']
Hence
t(1-6i —Gi
VIeVy — A0 e
0 (Vi) 0 eVoi
Finally, we have
—/6it
vt e 0 -1
e = eV [ 0 . \/éit] \4
B . i e—\2/6it n e\/jit _\/éieg\/g“ + \/éizx/git
= € \/gief\/@it \/é,ie\/git e—V6it eV6it
L 4 B 4 7 T 3
[ V6sin (6t
o fentyny )
- \/gsin \/ét
L) s (V1)




In [1]:

In [2]:

In [3]:

In [1]:
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Try using sympy to find the exponential function of the above matrix and compare the
results.

from sympy import *

L

2|

3 A = Matrix([[1, -2], [3, 111)
l‘t = var('t', real=True)

5 ‘E = exp (t*xA)
print (E)

Matrix ([[exp(t)*cos(sqrt(6)*t), -sqrt(6)*exp(t)*sin(sqrt(6)*t)/3],
[sqrt (6) *exp(t)*sin(sqrt(6)*t) /2, exp(t)*cos(sqrt(6)*t)]1])

print (latex(E)))

\left [\begin{matrix}e~{t} \cos{\left (\sqrt{6} t \right)} & - \frac{\sqrt{6}
e"{t} \sin{\left (\sqrt{6} t \right)}}{3}\\\frac{\sqrt{6} e {t} \sin{\
left (\sqrt{6} t \right)}}{2} & e~ {t} \cos{\left (\sqrt{6} t \right)}\end{

matrix}\right]
V/6et sin (\/ét)
et cos (\/ét) -
\/aet sin (\/gt)

5 et cos ( \/615)
Solve the differential equation with the Euler method and look at the phase space.

Program: exercise9 1 1

from numpy import array, arange

1

2 |import matplotlib.pyplot as plt

3

4 A = array ([[1, -2],

5 3, 111

6

7 def update(x, v, dt):

8 dx = A[0O, 0] * x * dt + A[0, 1] * y * dt
Y dy = A[1, 0] * x * dt + A[1, 1] * y * dt
10 return x + dx, y + dy

12 |dt = 0.001

13 |fig = plt.figure(figsize=(10, 10))

14 | plt.axis('scaled'), plt.xlim(-8.0, 8.0), plt.ylim(-8.0, 8.0)
15 | for x0 in arange(-2, 2, 0.2):

16 for yO in arange(-2, 2, 0.2):

17 path = [(x0, y0)]

18 for t in arange(0, 1, dt):

19 x, y = path[-1]

20 path.append (update(x, y, dt))

21 plt.plot (*zip (*path))
22 | plt.show ()
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-8

The following program uses the exact solution.

Program: exercise9 1 2

In [1]: 1 | from numpy import *
2 |import matplotlib.pyplot as plt
3
4 /A = array ([[1, -2],
5 [3, 111)
6
7 |def f(t):
8 return exp(t)*array([[cos(sqrt(6)*t), -sqrt(6)*sin(sqrt(6)*t)/3],
9 [sqrt (6) *sin(sqrt (6)*t) /2, cos(sqrt(6)=*t)]1]1)

11 |dt = 0.001

12 | fig = plt.figure(figsize=(10, 10))

13 | plt.axis('scaled'), plt.x1lim(-8.0, 8.0), plt.ylim(-8.0, 8.0)
14 | for x0 in arange(-2, 2, 0.2):

15 for yO in arange(-2, 2, 0.2):

16 path = [(x0, y0)]

17 for t in arange(0, 1, dt):

18 X, y = dot(£f(t), path[0])
19 path.append ((x, y))

20 plt.plot (xzip (*path))

21 | plt.show ()
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Exercise 9.2. (1) Solve the same problem above by Euler’s method, and compare
the approximate solution with the exact solution above.
(2) Investigate the movement of an object in R? attached to three or more springs.

Program: exercise9 2 1

In [1]: 1 |from vpython import x*
2
3 p = vec(0, 0, 0)
llq = vec(2, 0, 0)
5 x = vec(1, 0.5, 0)
6 v = vec(1, 0.5, 0)
7
8 |P = sphere(pos=x, radius=0.1)

9 |hl = helix(pos=p, radius=0.1, axis=x-p)
10 [h2 helix(pos=q, radius=0.1, axis=x-q)

scene.center = vec(1l, 0, 0)

1

13

14 | def update(x, v, dt):

15 x1 = x + v x dt

16 vi =v + (p+qg - 2 % x) x dt
17 return x1, vl

19 |def pos(t):

20 return vec (1+sin(sqrt(2)*t)/sqrt(2),

21 (sqrt (2) *cos (sqrt (2) *t)+sin(sqrt (2)*t)) /2/sqrt (2) ,0)
99

23 1t =0

24 |dt = 0.01

25 |while True:

26 rate (100)

27 X, v = update(x, v, dt)

28 P.pos = x

29 points(pos=[x], radius=2, color=color.cyan)

points (pos=[pos(t)], radius=2, color=color.red)

3

31 hl.axis = x-p

32 h2.axis = x-q - v * dt*x2
33 t += dt

Lines 14—17: Update formula by first-order approximation of Taylor expansion.

Lines 19—21: Exact solution.
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Errors accumulate in the first-order approximation of Taylor’s expansion. Use the second-
order approximation of the Taylor expansion.

def update(x, v, dt):
x1 =x +v *xdt + (p+qg -2 % x) / 2 x dt*x*x2
vi =v + (p+qg -2 % x) x dt - v * dt*x*2
return x1, vl

Program: exercise9 2 2

from vpython import *

p = vec(0, 0, 0)
q = vec(2, 0, 0)
x = vec(l, 0.5, 0)
v = vec(1, 0.5, 0)

P = sphere(pos=x, radius=0.1)

hl = helix(pos=p, radius=0.1, axis=x-p)
h2 = helix(pos=q, radius=0.1, axis=x-q)
scene.center = vec(1l, 0, 0)

def update(x, v, dt):
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el = hat(x - p) * (1 - mag(p - x))
e2 = hat(x - q) * (1 - mag(q - x))
x1 = x + v *x dt + (el + e2) / 2 *x dt*x*2
vi = v + (el + e2) * dt - v * dtx*2
return x1, vl

t =0

dt = 0.01

while True:
rate (100)
X, v = update(x, v, dt)
P.pos = x

points (pos=x, radius=2,
hl.axis=x-p
h2.axis=x-q

t += dt

color=color.cyan)

Program: exercise9 2 3

from vpython import *

p = vec(0, 0, 0)

q = vec(2, 0, 0)

r = vec(0, 2, 0)

s = vec(0, 0, 2)

x = vec(l, 0.5, 0)

v = vec(1, 0.5, 0)

P = sphere(pos=x, radius=0.1)

hl = helix(pos=p, radius=0.1, axis=x-p)
h2 = helix(pos=q, radius=0.1, axis=x-q)
h3 = helix(pos=r, radius=0.1, axis=x-r)
h4 = helix(pos=s, radius=0.1, axis=x-s)

def update(x, v, dt):
x1 x +v *xdt + (p+q+1r + s -
vl v+ (pt+tq+r+s -4 % x) *
return x1, vl

4 x x) / 2 * dt*x2
dt - 2 * v * dt*x*2



t =0
dt = 0.01
while True:

rate (100)

X, v =
P.pos =

points (pos=[x], radius=1,

hl.axis
h2.axis

X

h3.axis =

h4 . axis
t += dt

update(x, v, dt)

X°p
x=q
X-r
x-S

color=color.cyan)

195



In [1]:

196 CHAPTER 9. DYNAMICAL SYSTEMS

Exercise 9.3. Let X be a numerical semigroup containing p and ¢ whose greatest
common divisor is 1. Prove that all numbers greater than or equal to (p — 1)(¢ — 1)
belong to X. (Hint: Prove that the remainders of oq for 0 = 0,1,...,p — 1 divided
by p are all different, and for any m = (p — 1) (¢ — 1), m — oq is a multiple of p for
some o.)

Remark that X is closed under summation and also multiplication by natural numbers.
We first show the former half of the Hint. Conside natural numbers o; and oy such that
0 < 01 < g9 < p. Suppose the o1q and goq have a commom remainder r devided by p. Then
there exist m and n such that o,¢ = mp + r and o9 = np + r. Hence

(09 —01)q = 03¢ —01¢ = (n—m)Dp.

Since 0 < o9 — 01 < p and GCD (p, q) = 1, the left hand side above can not be a multiple of
p. This is contradiction.

Next, we first show the latter half of the Hint. Consider an integer m with m =
(p—1)(q¢—1). Let r be the remainder of m by p and choose ¢ such that 0 = ¢ < p and the
remainder of oq by p is r. Then, m — oq is a multiple of p. Thus, m > (p—1)g—p = oq—p,
and we have m — oq > —p. Hence, m — og 2 0 and it is a multiple of p. Since

m = (m—o0q)+o0q = ap+bq

for some nonnegative integers a and b where a and b are not zero at the same time, it follows
that m belongs to X.
The following program verifies the above proof with some concrete numbers.

Program: exercise9_3

1l 1/p, 9q =5, 9

2

3 |for k in range(p):

| m=(p - 1)x(q - 1) + k
5

6 r=mb9% p

7 s = [0] x p

8 for i in range(p):

9 j = i*xq % p
10 s[jl =1
11
12 sigma = s[r]

13 a = (m - sigma*q) // p
14 print (f '{m} = {al}*{p} + {sigmal*{q} = {a*p} + {sigmaxql}')
32 = 1%5 + 3%9 = 5 + 27
33 = 3x5 + 2x9 = 15 + 18
34 = 5x5 + 1x9 = 25 + 9
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35
36

7*5 + 0%9
0*x5 + 4x9

35 + 0
0 + 36

Supplimentary Excercise: Give a proof of Lemma 9.1 using this exercise. (Hint: use
mathematical induction.)
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Exercise 9.4. Prove the above results (Hint: Use Lemma 9.1).

It is easy to see that P is positive, then it is irrecucible and aperiodic. Conversely, suppose
that P is irreducible and aperiodic. We shall prove that P™ is pisitive for all sufficiently
large m.

Leti,j € I ={1,2,...,n}. First suppose that i # j. Let (s1, S2,...,8,) be a permutaion
of (1,2,...,n) such that s; = and s, = j. Because P is irreducible, for eachk € I\ {n},
there ismy, € N such that the (s, spy1)-component of P™* is positive. Because P is aperiodic,
for each k € I there is &, € N such that the greatest common divisor of £, &, ...,&, is 1 and
the (g, Sp41)-component od P is positive. Let

a = mp+mg+ -+ My +ai§s +as + -+ ané,
for aq,aq,...,a, € N. Then the (7, j)-component of
P = Pa& pmu pat pmz | pan-1€n-1 Ppin-1 panén

is positive. The set of all integers expressed as a1&1+a2&>+- - -+a,&, is a numerical semigroup,
and by Lemma 9.1, it contains all sufficient large numbers. Hence, there is n;; € N such that
(i, j)-component of P™ is positive for any m = n;;.

Next, suppose i = j. Let (s1,s2,...,S,) be a permutaion of (1,2,...,n) such that s; = i.
Let miy,ma,...,m,_1 and &, &, ..., &, be the same as above. There is m,, € N such that the
(Sn,1)-component od P™" is positive. Let

B=mit+met - +my+ars +ads + o+ andn

for aj,as,...,a, € N Then, the (i,4)-component of P’ is positive. For the same reason as
above, there is n; € N such that the(i,7)-component of P™ is positive for all m = n;.
Consequently, P™ is positive for all m = max {n;;, n;}.
17]
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Exercise 9.5. Prove the above properties (2)—(4).

(2)

Ps+t — e(ert)G _ esG+tG — €SG—|—6tG - P+ P,

because sG and tG commute (see Set. 7.4.).

(3)

Gt (Gt)’
SR NG
2
< g“+'_(Gt) 4+ .-
= |
IGlt | IGI*
R TR TR
— 0 (t]0)
(4)
P—I 2 342
ki I
G|t HGH t?
= Tt e
— 0 (t]0)

o oo
Here, we use the fact that, if Z ||| < oo, then Z x,, exists and

n=1 n=1

[oe)
<)
n=1

holds for a vector sequence {x,} -, in a normed linear space.




200 CHAPTER 9. DYNAMICAL SYSTEMS



Chapter 10

Applications and Development of
Linear Algebra

Exercise 10.1 | Sect. 10.2. p.242 | Properties of the polar expression of matrices
Exercise 10.2 | Sect. 10.2. p.243 | Properties of the trace norm

Exercise 10.3 | Sect. 10.2. p.243 | Properties of the Hilbert—Sch